Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus


IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 1.021

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.327
Source Normalized Impact per Paper (SNIP) 2018: 0.391

Online
ISSN
2196-7156
See all formats and pricing
More options …
Volume 231, Issue 3

Issues

Intramolecular Electron Transfer from Tryptophan to Guanosyl Radicals in a Linked System as a Model of DNA Repair

Olga B. Morozova
  • International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia
  • Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Natalya N. Fishman / Alexandra V. Yurkovskaya
  • Corresponding author
  • International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia
  • Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-30 | DOI: https://doi.org/10.1515/zpch-2016-0784

Abstract

As a model of chemical DNA repair, intramolecular electron transfer from tryptophan to the radical of the purine base guanosine combined into a conjugate by a flexible linker was studied by time-resolved chemically induced dynamic nuclear polarization (CIDNP). The guanosyl radicals were photochemically generated in the quenching reaction of the triplet excited dye 2,2′-dipyridyl. The CIDNP kinetics was obtained by detection of NMR spectra containing anomalously enhanced signals of diamagnetic products that are formed during a variable period after excitation by a laser pulse. The kinetic data obtained for the protons located on the guanosyl and tryptophanyl moieties of the conjugate were compared to those obtained in photoreactions of the molecules containing the same linker, but with only one of the two reactive moieties of the conjugate – tryptophanyl or guanosyl. Strong differences between the CIDNP kinetics of different conjugates were revealed and explained by a rapid intramolecular electron transfer from tryptophan to the guanosyl radical in the conjugate. Model simulations of the CIDNP kinetics allowed for determination of the rate constant of intramolecular electron transfer at (1.0±0.5)×106 s–1 indicating a high potential of chemical repair of the guanosyl radical by means of electron transfer from the tryptophanyl moiety in a surrounding protein pool that can provide rather efficient protection of oxidized DNA bases from pathological damage on a submicrosecond time scale.

Keywords: CIDNP; DNA repair; guanosyl radical; magnetic resonance; reaction kinetics; spectroscopy

Dedicated to: Kev Salikhov on the occasion of his 80th birthday.

References

  • 1.

    S. Kimura, K. Sakaguchi, Chem. Rev. 106 (2006) 753.Google Scholar

  • 2.

    C. M. Cuquerella, V. Lhiaubet-Vallet, F. Bosca, M. A. Miranda, Chem. Sci. 2 (2011) 1219.Google Scholar

  • 3.

    D. L. Narayanan, R. N. Saladi, J. L. Fox, Int. J. Dermatol. 49 (2010) 978.Google Scholar

  • 4.

    C. von Sonntag, Free-Radical-Induced DNA Damage and Its Repair, Springer Verlag, Berlin (2006).Google Scholar

  • 5.

    Z. Cai, Z. Gu, M. D. Sevilla, J. Phys. Chem. B 105 (2001) 6031.Google Scholar

  • 6.

    T. Melvin, S. W. Botchway, A. W. Parker, P. O’Neill, J. Am. Chem. Soc. 118 (1996) 10031.Google Scholar

  • 7.

    T. Melvin, S. M. T. Cunniffe, P. O’Neill, A. W. Parker, T. Roldan-Arjona, Nucleic Acids Res. 26 (1998) 4935.Google Scholar

  • 8.

    T. Douki, D. Angelov, J. Cadet, J. Am. Chem. Soc. 123 (2001) 11360.Google Scholar

  • 9.

    C. J. Burrows, J. G. Muller, Chem. Rev. 98 (1998) 1109.Google Scholar

  • 10.

    R. L. Willson, P. Wardman, K. D. Asmus, Nature 252 (1974) 323.Google Scholar

  • 11.

    R. Zheng, Y. Shi, Z. Jia, C. Zhao, Q. Zhang, X. Tan, Chem. Soc. Rev. 39 (2010) 2827.Google Scholar

  • 12.

    J. R. Milligan, J. A. Aguilera, A. Ly, N. Q. Tran, O. Hoang, J. F. Ward, Nucleic Acids Res. 31 (2003) 6258.Google Scholar

  • 13.

    J. R. Milligan, N. Q. Tran, A. Ly, J. F. Ward, Biochemistry 43 (2004) 5102.Google Scholar

  • 14.

    J. R. Milligan, J. A. Aguilera, O. Hoang, A. Ly, N. Q. Tran, J. F. Ward, J. Am. Chem. Soc. 126 (2004) 1682.Google Scholar

  • 15.

    A. Ly, N. Q. Tran, K. Sullivan, S. L. Bandong, J. R. Milligan, Org. Biomol. Chem. 3 (2005) 917.Google Scholar

  • 16.

    S. Steenken, S. V. Jovanovic, J. Am. Chem. Soc. 119 (1997) 617.Google Scholar

  • 17.

    K. Kobayashi, S. Tagawa, J. Am. Chem. Soc. 125 (2003) 10213.Google Scholar

  • 18.

    J. R. Milligan, J. A. Aguilera, O. Hoang, A. Ly, N. Q. Tran, J. F. Ward, J. Am. Chem. Soc. 126 (2004) 1682.Google Scholar

  • 19.

    A. Ly, N. Q. Tran, J. F. Ward, J. R. Milligan, Biochemistry 43 (2004) 9098.Google Scholar

  • 20.

    A. Ly, S. L. Bandong, N. Q. Tran, K. J. Sullivan, J. R. Milligan, J. Phys. Chem. B 109 (2005) 13368.Google Scholar

  • 21.

    A. Ly, N. Q. Tran, K. Silliavan, S. L. Bandong, J. F. Ward, J. R. Milligan, Org. Biomol. Chem. 3 (2005) 917.Google Scholar

  • 22.

    J. R. Milligan, J. A. Aguilera, A. Ly, O. Hoang, N. Q. Tran, J. F. Ward, Nucleic Acid Res. 31 (2003) 6258.Google Scholar

  • 23.

    G. L. Closs, R. J. Miller, J. Am. Chem. Soc. 101 (1979) 1639.Google Scholar

  • 24.

    K. M. Salikhov, Y. N. Molin, R. Z. Sagdeev, A. L. Buchachenko, Spin Polarization and Magnetic Effects in Chemical Reactions, Elsevier, Amsterdam (1984).Google Scholar

  • 25.

    O. B. Morozova, A. S. Kiryutin, A. V. Yurkovskaya, J. Phys. Chem. B 112 (2008) 2747.Google Scholar

  • 26.

    O. B. Morozova, A. S. Kiryutin, R. Z. Sagdeev, A. V. Yurkovskaya, J. Phys. Chem. B 111 (2007) 7439.Google Scholar

  • 27.

    O. B. Morozova, A. V. Yurkovskaya, J. Phys. Chem. B 119 (2015) 140.Google Scholar

  • 28.

    T. V. Abramova, O. B. Morozova, V. N. Silnikov, A. V. Yurkovskaya, Beilstein J. Org. Chem. 9 (2013) 2898.Google Scholar

  • 29.

    Y. P. Tsentalovich, O. B. Morozova, A. V. Yurkovskaya, P. J. Hore, J. Phys. Chem. A 103 (1999) 5362.Google Scholar

  • 30.

    A. V. Yurkovskaya, O. A. Snytnikova, O. B. Morozova, Y. P. Tsentalovich, R. Z. Sagdeev, Phys. Chem. Chem. Phys. 5 (2003) 3653.Google Scholar

  • 31.

    O. B. Morozova, N. N. Saprygina, O. S. Fedorova, A. V. Yurkovskaya, Appl. Magn. Reson. 41 (2011) 239.Google Scholar

  • 32.

    G. Buntinx, O. Poizat, P. Valat, V. Wintgens, R. Righini, P. Foggi, J. Chim. Phys. Phys.-Chim. Biol. 90 (1993) 1733.Google Scholar

  • 33.

    M. L. Posener, G. E. Adams, P. Wardman, R. B. Cundall, J. Chem. Soc. Faraday Trans. I 2 (1976) 2231.Google Scholar

  • 34.

    R. Kaptein, J. Chem. Soc. Chem. Comm. 14 (1971) 732.Google Scholar

  • 35.

    G. Bleifuss, M. Kolberg, S. Poetsch, W. Hofbauer, R. Bittl, W. Lubitz, A. Graeslund, G. Lassmann, F. Lendzian, Biochemistry 40 (2001) 15362.Google Scholar

  • 36.

    S. Grosse, A. V. Yurkovskaya, J. Lopez, H.-M. Vieth, J. Phys. Chem. A 105 (2001) 6311.Google Scholar

  • 37.

    A. Adhikary, A. Kumar, D. Becker, M. D. Sevilla, J. Phys. Chem. B 110 (2006) 24171.Google Scholar

  • 38.

    S. Stob, R. Kaptein, Photochem. Photobiol. 49 (1989) 565.Google Scholar

  • 39.

    G. L. Closs, E. V. Sitzmann, J. Am. Chem. Soc. 103 (1981) 3217.Google Scholar

  • 40.

    J. Burri, H. Fischer, Chem. Phys. 161 (1992) 429.Google Scholar

  • 41.

    J. K. Vollenweider, H. Fischer, J. Hennig, R. Leuschner, Chem. Phys. 97 (1985) 217.Google Scholar

  • 42.

    J. K. Vollenweider, H. Fischer, Chem. Phys. 124 (1988) 333.Google Scholar

  • 43.

    O. B. Morozova, A. V. Yurkovskaya, Y. P. Tsentalovich, M. D. E. Forbes, R. Z. Sagdeev, J. Phys. Chem. B 106 (2002) 1455.Google Scholar

About the article

Received: 2016-04-08

Accepted: 2016-06-17

Published Online: 2016-08-30

Published in Print: 2017-03-01


Funding Source: Russian Science Foundation

Award identifier / Grant number: 15-13-20035

This work was supported by the Russian Science Foundation (Grant No. 15-13-20035), and by FASO Russia (project 0333-2014-0001) at the transient absorption measurements. We are thankful to Dr. T. V. Abramova (ICBFM, Novosibirsk) for providing us with G-L-Trp, G-L and L-Trp compounds.


Citation Information: Zeitschrift für Physikalische Chemie, Volume 231, Issue 3, Pages 479–495, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2016-0784.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in