Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus


IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 1.021

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.327
Source Normalized Impact per Paper (SNIP) 2018: 0.391

Online
ISSN
2196-7156
See all formats and pricing
More options …
Volume 231, Issue 3

Issues

Relaxation of Multiple Quantum NMR Coherences in Quasi-One-Dimensional Spin Systems

Georgy A. Bochkin
  • Institute of Problems of Chemical Physics of Russian Academy of Sciences, Academician Semeonov, 1, Chernogolovka 142432, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edward B. Fel’dman
  • Corresponding author
  • Institute of Problems of Chemical Physics of Russian Academy of Sciences, Academician Semeonov, 1, Chernogolovka 142432, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergey G. Vasil’ev
  • Institute of Problems of Chemical Physics of Russian Academy of Sciences, Academician Semeonov, 1, Chernogolovka 142432, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-26 | DOI: https://doi.org/10.1515/zpch-2016-0807

Abstract

Dynamics and relaxation of the multiple quantum (MQ) NMR coherences of the zeroth and second orders are studied experimentally and theoretically in a quasi-one-dimensional chain of nuclear spins 19F in calcium fluorapatite. The dependencies of the intensities of those coherences on the time of the preparation period of the MQ NMR experiment is obtained. A good agreement of the experiment with theoretical predictions is demonstrated. Dipolar relaxation of the MQ NMR coherences is investigated on the evolution period of the MQ NMR experiment. A theory of dipolar relaxation of the MQ NMR coherences is developed for the model in which only the ZZ part of the secular dipole–dipole interactions is taken into account (ZZ model). It is shown that the MQ NMR coherence of the zeroth order is not subject to dipolar relaxation in the ZZ model. The experimental data qualitatively agree with the results of the developed theory for the MQ NMR coherence of the second order.

Keywords: fermions; Jordan–Wigner transformations; multiple quantum coherence; multiple quantum dynamics; multiple quantum NMR; relaxation; ZZ model

Dedicated to: Kev Salikhov on the occasion of his 80th birthday.

References

  • 1.

    J. Baum, M. Munowitz, A. N. Garroway, A. Pines, J. Chem. Phys. 83 (1985) 2015.Google Scholar

  • 2.

    M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge (2000).Google Scholar

  • 3.

    P. Cappellaro, C. Ramanathan, D. G. Cory, Phys. Rev. Lett. 99 (2007) 250506.Google Scholar

  • 4.

    G. Kaur, A. Ajoy, P. Cappellaro, New J. Phys. 15 (2013) 093035.Google Scholar

  • 5.

    S. Lacelle, S.-J. Hwang, B. C. Gerstein, J. Chem. Phys. 99 (1993) 8407.Google Scholar

  • 6.

    M. Tomaselli, S. Hediger, D. Suter, R. R. Ernst, J. Chem. Phys. 105 (1966) 10672.Google Scholar

  • 7.

    H. C. Krojanski, D. Suter, Phys. Rev. Lett. 93 (2004) 090501.Google Scholar

  • 8.

    H. Cho, P. Cappellaro, D. G. Cory, C. Ramanathan, Phys. Rev. B 74 (2006) 224434.Google Scholar

  • 9.

    M. Lovrić, H. G. Krojanski, D. Suter, Phys. Rev. A 75 (2007) 042305.Google Scholar

  • 10.

    G. A. Álvarez, E. P. Danieli, P. R. Levstein, H. M. Pastawski, Phys. Rev. A 82 (2010) 012310.Google Scholar

  • 11.

    G. A. Álvarez, D. Suter, Phys. Rev. Lett. 104 (2010) 230403.Google Scholar

  • 12.

    E. B. Fel’dman, S. Lacelle, Chem. Phys. Lett. 253 (1996) 27.Google Scholar

  • 13.

    E. B. Fel’dman, S. Lacelle, J. Chem. Phys. 107 (1997) 7067.Google Scholar

  • 14.

    S. I. Doronin, I. I. Maksimov, E. B. Fel’dman, J. Exp. Theor. Phys. 91 (2000) 597.Google Scholar

  • 15.

    E. B. Fel’dman, Appl. Magn. Reson. 45 (2014) 797.Google Scholar

  • 16.

    D. C. Mattis, The Many Body Problem: An Encyclopedia of Exactly Solved Models in One Dimension, World Scientific, Singapore (1993).Google Scholar

  • 17.

    G. Cho, J. P. Yesinowski, Chem. Phys. Lett. 205 (1993) 1.Google Scholar

  • 18.

    G. Cho, J. P. Yesinowski, J. Phys. Chem. 100 (1996) 15716.Google Scholar

  • 19.

    M. Goldman, Spin temperature and Nuclear Magnetic Resonance in Solids, Clarendon, Oxford (1970).Google Scholar

  • 20.

    S. I. Doronin, S. G. Vasil’ev, A. A. Samoilenko, E. B. Fel’dman, B. A. Shumm, JETP Lett. 101 (2015) 613.Google Scholar

  • 21.

    U. Haberlen, J. S. Waugh, Phys. Rev. 185 (1969) 420.Google Scholar

  • 22.

    S. I. Doronin, E. B. Fel’dman, I. I. Maximov, J. Magn. Reson. 171 (2004) 37.Google Scholar

  • 23.

    P. Jordan, E. Wigner, Z. Phys. 47 (1928) 631.Google Scholar

  • 24.

    G. A. Álvarez, M. Mishkovsky, E. P. Danieli, P. R. Levstein, H. M. Pastawski, L. Frydman, Phys. Rev. A 81 (2010) 060302.Google Scholar

  • 25.

    C. Ramanathan, P. Cappellaro, L. Viola, D. G. Cory, New J. Phys. 13 (2011) 103015.Google Scholar

  • 26.

    A. Abragam, The Principles of Nuclear Magnetism, Clarendon, Oxford (1961).Google Scholar

  • 27.

    E. B. Fel’dman, S. Lacelle, J. Chem. Phys. 104 (1996) 2000.Google Scholar

  • 28.

    M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Hemisphere, New York, NY (1987).Google Scholar

  • 29.

    S. I. Doronin, E. B. Fel’dman, A. I. Zenchuk, J. Chem. Phys. 134 (2011) 034102.Google Scholar

About the article

Received: 2016-05-31

Accepted: 2016-07-26

Published Online: 2016-08-26

Published in Print: 2017-03-01


Funding Source: Russian Foundation for Basic Research

Award identifier / Grant number: 16-03-00056

Award identifier / Grant number: 16-33-00867

The authors thank Professor K.M. Salikhov for fruitful and stimulating discussions. The work is supported by the Russian Foundation for Basic Research (Grants No. 16-03-00056 and No. 16-33-00867) and the Program of the Presidium of RAS No. 1.26 “Electron Spin Resonance, Spin-Dependent Electron Effects and Spin Technologies” (Grant No. 0089-2015-0191).


Citation Information: Zeitschrift für Physikalische Chemie, Volume 231, Issue 3, Pages 513–525, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2016-0807.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
G.A. Bochkin, E.B. Fel’dman, I.D. Lazarev, A.A. Samoilenko, and S.G. Vasil’ev
Journal of Magnetic Resonance, 2019, Volume 301, Page 10
[2]
G. A. Bochkin, S. G. Vasil’ev, I. D. Lazarev, and E. B. Fel’dman
Journal of Experimental and Theoretical Physics, 2018, Volume 127, Number 3, Page 532

Comments (0)

Please log in or register to comment.
Log in