Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus

12 Issues per year


IMPACT FACTOR 2017: 1.144
5-year IMPACT FACTOR: 1.144

CiteScore 2017: 1.08

SCImago Journal Rank (SJR) 2017: 0.495
Source Normalized Impact per Paper (SNIP) 2017: 0.495

Online
ISSN
2196-7156
See all formats and pricing
More options …
Volume 231, Issue 3

Issues

SABRE Hyperpolarization of Bipyridine Stabilized Ir-Complex at High, Low and Ultralow Magnetic Fields

Andrey N. Pravdivtsev
  • Corresponding author
  • International Tomography Center, Institutskaya 3A, Novosibirsk, 630090, Russia
  • Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russia, Tel.: +7(383)330-8868, Fax: +7(383)333-1399
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-26 | DOI: https://doi.org/10.1515/zpch-2016-0810

Abstract

A strong limitation of nuclear magnetic resonance is its low inherent sensitivity that can be overcome by using an appropriate hyperpolarization technique. Presently, dynamic nuclear polarization and spin-exchange optical pumping are the only hyperpolarization techniques that are used in applied medicine. However, both are relatively complex in use and expensive. Here we present a modification of the signal amplification by reversible exchange (SABRE) hyperpolarization method – SABRE on stabilized Ir-complexes. A stabilized Ir-complex (here we used bipyridine for stabilization) can be hyperpolarized in a wide range of magnetic fields from a few μT upto 10 T with 15N polarization of about 1–3%. Moreover, the investigated complex can be incorporated into biomolecules or other bulky molecules; in this situation exchange with para-hydrogen will allow one to continuously generate hyperpolarization.

This article offers supplementary material which is provided at the end of the article.

Keywords: bipyridine; NMR; para-hydrogen; SABRE

Dedicated to: Kev Salikhov on the occasion of his 80th birthday.

References

  • 1.

    K. H. Hausser, D. Stehlik, Advances in Magnetic Resonance, (J. S. Waugh Ed.) Academic, New York (1968), P. 79.Google Scholar

  • 2.

    C. Griesinger, M. Bennati, H.-M. Vieth, C. Luchinat, G. Parigi, P. Höfer, F. Engelke, S. J. Glaser, V. Denysenkov, T. F. Prisner, Prog. Nucl. Magn. Reson. Spectrosc. 64 (2012) 4.Google Scholar

  • 3.

    T. Maly, G. T. Debelouchina, V. S. Bajaj, K.-N. Hu, C.-G. Joo, M. L. Mak-Jurkauskas, J. R. Sirigiri, P. C. A. van der Wel, J. Herzfeld, R. J. Temkin, R. G. Griffin, J. Chem. Phys. 128 (2008) 052211.Google Scholar

  • 4.

    W. Happer, Rev. Mod. Phys. 44 (1972) 169.Google Scholar

  • 5.

    D. Stehlik, H.-M. Vieth, Mol. Cryst. Liq. Cryst. 93 (1983) 83.Google Scholar

  • 6.

    J. Natterer, J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc. 31 (1997) 293.Google Scholar

  • 7.

    R. A. Green, R. W. Adams, S. B. Duckett, R. E. Mewis, D. C. Williamson, G. G. R. Green, Prog. Nucl. Magn. Reson. Spectrosc. 67 (2012) 1.Google Scholar

  • 8.

    R. W. Adams, J. A. Aguilar, K. D. Atkinson, M. J. Cowley, P. I. P. Elliott, S. B. Duckett, G. G. R. Green, I. G. Khazal, J. López-Serrano, D. C. Williamson, Science 323 (2009) 1708.Google Scholar

  • 9.

    M. J. Cowley, R. W. Adams, K. D. Atkinson, M. C. R. Cockett, S. B. Duckett, G. G. R. Green, J. A. B. Lohman, R. Kerssebaum, D. Kilgour, R. E. Mewis, J. Am. Chem. Soc. 133 (2011) 6134.Google Scholar

  • 10.

    A. N. Pravdivtsev, A. V. Yurkovskaya, H.-M. Vieth, K. L. Ivanov, R. Kaptein, ChemPhysChem 14 (2013) 3327.Google Scholar

  • 11.

    E. B. Dücker, L. T. Kuhn, K. Münnemann, C. Griesinger, J. Magn. Reson. 214 (2012) 159.Google Scholar

  • 12.

    A. N. Pravdivtsev, A. V. Yurkovskaya, H. Zimmermann, H. M. Vieth, K. L. Ivanov, Rsc Advances 5 (2015) 63615.Google Scholar

  • 13.

    T. Theis, M. L. Truong, A. M. Coffey, R. V. Shchepin, K. W. Waddell, F. Shi, B. M. Goodson, W. S. Warren, E. Y. Chekmenev, J. Am. Chem. Soc. 137 (2015) 1404.Google Scholar

  • 14.

    T. Theis, M. Truong, A. M. Coffey, E. Y. Chekmenev, W. S. Warren, J. Magn. Reson. 248 (2014) 23.Google Scholar

  • 15.

    N. Eshuis, R. L. E. G. Aspers, B. J. A. van Weerdenburg, M. C. Feiters, F. P. J. T. Rutjes, S. S. Wijmenga, M. Tessari, Angew. Chem. Int. Ed. 54 (2015) 14527.Google Scholar

  • 16.

    A. N. Pravdivtsev, A. V. Yurkovskaya, H. M. Vieth, K. L. Ivanov, Phys. Chem. Chem. Phys. 16 (2014) 24672.Google Scholar

  • 17.

    A. N. Pravdivtsev, A. V. Yurkovskaya, H.-M. Vieth, K. L. Ivanov, J. Phys. Chem. B 119 (2015) 13619.Google Scholar

  • 18.

    J. B. Hövener, S. Bär, J. Leupold, K. Jenne, D. Leibfritz, J. Hennig, S. B. Duckett, D. von Elverfeldt, NMR Biomed. 26 (2013) 124.Google Scholar

  • 19.

    J. B. Hövener, N. Schwaderlapp, T. Lickert, S. B. Duckett, R. E. Mewis, L. A. R. Highton, S. M. Kenny, G. G. R. Green, D. Leibfritz, J. G. Korvink, J. Hennig, D. von Elverfeldt, Nat. Commun. 4 (2013) 2946.Google Scholar

  • 20.

    J. B. Hövener, N. Schwaderlapp, R. Borowiak, T. Lickert, S. B. Duckett, R. E. Mewis, R. W. Adams, M. J. Burns, L. A. R. Highton, G. G. R. Green, A. Olaru, J. Hennig, D. von Elverfeldtt, Anal. Chem. 86 (2014) 1767.Google Scholar

  • 21.

    R. E. Mewis, M. Fekete, G. G. R. Green, A. C. Whitwood, S. B. Duckett, Chem. Commun. 51 (2015) 9857.Google Scholar

  • 22.

    T. Theis, G. X. Ortiz, A. W. J. Logan, K. E. Claytor, Y. Feng, W. P. Huhn, V. Blum, S. J. Malcolmson, E. Y. Chekmenev, Q. Wang, W. S. Warren, Sci. Adv. 2 (2016).Google Scholar

  • 23.

    I. Kownacki, M. Kubicki, K. Szubert, B. Marciniec, J. Organomet. Chem. 693 (2008) 321.Google Scholar

  • 24.

    A. S. Kiryutin, A. N. Pravdivtsev, K. L. Ivanov, Y. A. Grishin, H.-M. Vieth, A. V. Yurkovskaya, J. Magn. Reson. 263 (2016) 79.Google Scholar

  • 25.

    M. L. Truong, T. Theis, A. M. Coffey, R. V. Shchepin, K. W. Waddell, F. Shi, B. M. Goodson, W. S. Warren, E. Y. Chekmenev, J. Phys. Chem. C 119 (2015) 8786.Google Scholar

  • 26.

    K. L. Ivanov, A. N. Pravdivtsev, A. V. Yurkovskaya, H.-M. Vieth, R. Kaptein, Prog. Nucl. Magn. Reson. Spectros. 81 (2014) 1.Google Scholar

  • 27.

    A. N. Pravdivtsev, K. L. Ivanov, A. V. Yurkovskaya, P. A. Petrov, H.-H. Limbach, R. Kaptein, and H.-M. Vieth, J. Magn. Reson. 261 (2015) 73.Google Scholar

  • 28.

    M. Fekete, O. Bayfield, S. B. Duckett, S. Hart, R. E. Mewis, N. Pridmore, P. J. Rayner, A. Whitwood, Inorg. Chem. 52 (2013) 13453.Google Scholar

  • 29.

    S. Gloggler, R. Muller, J. Colell, M. Emondts, M. Dabrowski, B. Blumich, S. Appelt, Phys. Chem. Chem. Phys. 13 (2011) 13759.Google Scholar

  • 30.

    H. Zeng, J. Xu, J. Gillen, M. T. McMahon, D. Artemov, J.-M. Tyburn, J. A. B. Lohman, R. E. Mewis, K. D. Atkinson, G. G. R. Green, S. B. Duckett, P. C. M. van Zijl, J. Magn. Reson. 237 (2013) 73.Google Scholar

  • 31.

    V. Daniele, F.-X. Legrand, P. Berthault, J.-N. Dumez, G. Huber, ChemPhysChem 16 (2015) 3413.Google Scholar

  • 32.

    H. F. Zeng, J. D. Xu, M. T. McMahon, J. A. B. Lohman, P. C. M. van Zijl, J. Magn. Reson. 246 (2014) 119.Google Scholar

  • 33.

    D. A. Barskiy, K. V. Kovtunov, I. V. Koptyug, P. He, K. A. Groome, Q. A. Best, F. Shi, B. M. Goodson, R. V. Shchepin, A. M. Coffey, K. W. Waddell, E. Y. Chekmenev, J. Am. Chem. Soc. 136 (2014) 3322.Google Scholar

  • 34.

    A. S. Kiryutin, A. V. Yurkovskaya, N. N. Lukzen, H.-M. Vieth, K. L. Ivanov, J. Chem. Phys. 143 (2015) 234203.Google Scholar

  • 35.

    S. J. DeVience, R. L. Walsworth, M. S. Rosen, Phys. Rev. Lett. 111 (2013) 173002.Google Scholar

  • 36.

    A. N. Pravdivtsev, A. V. Yurkovskaya, N. N. Lukzen, H. M. Vieth, K. L. Ivanov, Phys. Chem. Chem. Phys. 16 (2014) 18707.Google Scholar

  • 37.

    T. Theis, Y. Feng, T. Wu, W. S. Warren, J. Chem. Phys. 140 (2014) 014201.Google Scholar

  • 38.

    D. A. Barskiy, A. N. Pravdivtsev, K. L. Ivanov, K. V. Kovtunov, I. V. Koptyug, Phys. Chem. Chem. Phys. 18 (2016) 89.Google Scholar

About the article

Received: 2016-06-06

Accepted: 2016-07-15

Published Online: 2016-08-26

Published in Print: 2017-03-01


Citation Information: Zeitschrift für Physikalische Chemie, Volume 231, Issue 3, Pages 497–511, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2016-0810.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Thomas Theis, Nuwandi M. Ariyasingha, Roman V. Shchepin, Jacob R. Lindale, Warren S. Warren, and Eduard Y. Chekmenev
The Journal of Physical Chemistry Letters, 2018, Page 6136

Comments (0)

Please log in or register to comment.
Log in