Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus


IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 1.021

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.327
Source Normalized Impact per Paper (SNIP) 2018: 0.391

Online
ISSN
2196-7156
See all formats and pricing
More options …
Volume 231, Issue 3

Issues

Gas-Phase Hydrogenation with Parahydrogen Over Immobilized Vaska’s Complex

Ivan V. Skovpin
  • Corresponding author
  • Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russian Federation
  • Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimir V. Zhivonitko
  • Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russian Federation
  • Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Igor P. Prosvirin
  • Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr. Novosibirsk 630090, Russian Federation
  • State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dzhalil F. Khabibulin
  • Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr. Novosibirsk 630090, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Igor V. Koptyug
  • Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russian Federation
  • Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-09-24 | DOI: https://doi.org/10.1515/zpch-2016-0824

Abstract

Generating parahydrogen-induced polarization (PHIP) of nuclear spins with immobilized transition metal complexes as hydrogenation catalysts allows one to produce pure hyperpolarized substances, which can open new revolutionary perspectives for PHIP applications. A major drawback of immobilized complexes is their low stability under reaction conditions. In the present work we studied an immobilized iridium complex, Ir/SiO2P, synthesized by a covalent anchoring of Vaska’s complex on phospine-modified silica gel. This complex was used to obtain hyperpolarized gasses in the gas phase hydrogenation of propene, propyne and 1-butyne with parahydrogen in PASADENA and ALTADENA experiments. It was found that, in contrast to other immobilized complexes, Ir/SiO2P is stable under reaction conditions at up to 140°C, and the reduction of iridium does not occur according to XPS analysis. Moreover, the application of Ir/SiO2P catalyst allowed us to generate continuous flow of hyperpolarized propene and 1-butene with (300–500)-fold NMR signal enhancement which is significantly higher than commonly observed for most supported metal catalysts. The shape of polarized propene signals in PASADENA experiment has indicated that parahydrogen addition to propyne occurs non-stereospecifically, i.e. PHIP was observed for all protons of the vinyl fragment of propene. The analysis of the polarized signals has shown that syn pairwise addition dominates, which was confirmed by spectra simulations. It was found that storage of Ir/SiO2P under Ar atmosphere leads to a decrease in PHIP amplitude and an increase in the activity of the catalyst. This observation is discussed in terms of the interaction of Ir/SiO2P with trace amounts of oxygen in Ar, leading to partial oxidation of triphenylphosphine ligand to triphenylphosphine oxide accompanied by the activation of the immobilized complex. It was also found that the interaction of Ir/SiO2P with alkenes likely leads to formation of stable monohydride complexes, decreasing the production of PHIP in hydrogenations. At the same time, stable substrate complexes are likely formed in alkyne hydrogenations, leading to a significant decrease in the monohydride complex formation and to an increased production of PHIP.

This article offers supplementary material which is provided at the end of the article.

Keywords: hydrogenation; immobilized complex; parahydrogen; PHIP

Dedicated to: Kev Salikhov on the occasion of his 80th birthday.

References

  • 1.

    C. R. Bowers, in “Encyclopedia of Nuclear Magnetic Resonance”, volume 9, (Eds. D. M. Grant and R. K. Harris), John Wiley & Songs, Ltd, Chichester (2002), p. 750.Google Scholar

  • 2.

    S. B. Duckett, R. E. Mewis, Acc. Chem. Res. 45 (2012) 1247.Google Scholar

  • 3.

    H. E. Moller, X. J. Chen, B. Saam, K. D. Hagspiel, G. A. Johnson, T. A. Altes, E. E. de Lange, H. U. Kauczor, Magn. Reson. Med. 47 (2002) 1029.Google Scholar

  • 4.

    J. H. Ardenkjaer-Larsen, J. Magn. Reson. 264 (2016) 3.Google Scholar

  • 5.

    C. R. Bowers, D. P. Weitekamp, Phys. Rev. Lett. 57 (1986) 2645.Google Scholar

  • 6.

    C. R. Bowers, D. P. Weitekamp, J. Am. Chem. Soc. 109 (1987) 5541.Google Scholar

  • 7.

    S. B. Duckett, N. J. Wood, Cord. Chem. Rev. 252 (2008) 2278.Google Scholar

  • 8.

    J. Natterer, J. Bargon, Prog. Nucl. Magn. Res. 31 (1997) 293.Google Scholar

  • 9.

    K. V. Kovtunov, V. V. Zhivonitko, I.V. Skovpin, D. A. Barskiy, O. G. Salnicov, I. V. Koptyug, J. Phys. Chem. C 117 (2013) 22887.Google Scholar

  • 10.

    R. Eisenberg, T. Eisenschmid, M. Chinn, R. Kirss, in “Homogeneous Transition Metal Catalyzed Reaction” volume 240, (Ed. W. R. Moser, D. W. Slocum) American Chemical Society, Washington, DC (1992), pp. 47–74.Google Scholar

  • 11.

    S. B. Duckett, C. J. Sleigh, Prog. Nucl. Magn. Reson. Spectrosc. 34 (1999) 71.Google Scholar

  • 12.

    V. V. Zhivonitko, V.-V. Telkki, K. Chernichenko, T. Repo, M. Leskelä, V. Sumerin, I. V. Koptyug, J. Am. Chem. Soc. 136 (2014) 598.Google Scholar

  • 13.

    K. V. Kovtunov, I. E. Beck, V. I. Bukhtiyarov, I. V. Koptyug, Angew. Chem. Int. Ed. 47 (2008) 1492.Google Scholar

  • 14.

    K. V. Kovtunov, V. V. Zhivonitko, I. V. Skovpin, D. A. Barskiy, I. V. Kotyug, Top. Curr. Chem. 338 (2013) 123.Google Scholar

  • 15.

    V. V. Zhivonitko, K. V. Kovtunov, I. V. Skovpin, D. A. Barskiy, O. G. Salnikov, I. V. Kotyug, Understanding Organometallic Reaction Mechanisms and Catalysis; Computational and Experimental Tools, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany (2014), p. 145.Google Scholar

  • 16.

    R. Zhou, W. Cheng, L. M. Neal, E. W. Zhao, K. Ludden, H. E. Hagelin-Weaver, C. R. Bowers, Phys. Chem. Chem. Phys. 17 (2015) 26121.Google Scholar

  • 17.

    V. V. Zhivonitko, I. V. Skovpin, M. Crespo-Quesada, L. Kiwi-Minsker, I. V. Kotyug, J. Phys. Chem. C 120 (2016) 4945.Google Scholar

  • 18.

    K. V. Kovtunov, D. A. Barskiy, O. G. Salnikov, A. K. Khudorozhkov, V. I. Bukhtiyarov, I. P. Prosvirin, I. V. Kotyug, Chem. Commun. 50 (2014) 875.Google Scholar

  • 19.

    T. Gutmann, T. Ratajczyk, Y. Xu, H. Breitzke, A. Grunberg, S. Dillenberger, U. Bommerich, T. Trantzschel, J. Bernarding, G. Buntkowsky, Solid State NMR. 38 (2011) 90.Google Scholar

  • 20.

    A. M. Balu, S. B. Duckett, R. Luque, Dalton Trans. 26 (2009) 5074.Google Scholar

  • 21.

    S. Abdulhussain, H. Breitzke, T. Ratajczyk, A. Grunberg, M. Srour, D. Arnaut, H. Weidler, U. Kunz, H. J. Kleebe, U. Bommerich, J. Bernarding, T. Gutmann, G. Buntkowsky, Chem. Eur. J. 20 (2014) 1159.Google Scholar

  • 22.

    V.-V. Telkki, V. V. Zhivonitko, S. Ahola, K. V. Kovtunov, J. Jokisaari, I. V. Koptyug, Angew. Chem. Int. Ed. 49 (2010) 8363.Google Scholar

  • 23.

    V. V. Zhivonitko, V.-V. Telkki, I. V. Koptyug, Angew. Chem. Int. Ed. 51 (2012) 8054.Google Scholar

  • 24.

    V. V. Zhivonitko, K. V. Kovtunov, I. E. Beck, A. B. Ayupov, V. I. Bukhtiyarov, I. V. Koptyug, J. Phys. Chem. C 115 (2011) 13386.Google Scholar

  • 25.

    M. Tada, Y. Iwasawa, Chem. Commun. (2006) 2833.Google Scholar

  • 26.

    I. V. Koptyug, I. V. Koptyug, S. R. Burt, M. S. Anwar, C. Hilty, S. I. Han, A. Pines, R. Z. Sagdeev, J. Am. Chem. Soc. 129 (2007) 5580.Google Scholar

  • 27.

    I. V. Skovpin, V.V. Zhivonitko, I. V. Koptyug, Appl. Magn. Reson. 41 (2011) 393.Google Scholar

  • 28.

    I. V. Skovpin, V. V. Zhivonitko, R. Kaptein, I. V. Koptyug, Appl. Magn. Reson. 44 (2013) 289.Google Scholar

  • 29.

    J. Blumel, Coord. Chem. Rev. 252 (2008) 2410.Google Scholar

  • 30.

    W. Strohmeier, J. Organometal. Chem. 32 (1971) 137.Google Scholar

  • 31.

    W. Strohmeier, R. Fleischmann, T. Onoda, J. Organometal. Chem. 28 (1971) 281.Google Scholar

  • 32.

    C. Mastes, Homogeneous Transition-metal Catalysis: A Gentle Art, Springer, Netherlands (1981), p. 38.Google Scholar

  • 33.

    F. Holsboer, W. Beck, H. D. Bartunik, J. Chem. Soc. Dalt. Trans. 17 (1973) 1828.Google Scholar

  • 34.

    R. Zanoni, R. Psaro, C. Dossi, L. Garlaschelli, R. Pergola, D. Roberto, J. Clust. Sci. 1 (1990) 241.Google Scholar

  • 35.

    M. P. Lanci, D. W. Brinkley, K. L. Stone, V. V. Smirnov, J. P. Roth, Angew. Chem. Int. Ed. Engl. 44 (2005) 7273.Google Scholar

  • 36.

    K. D. Schramm, T. H. Tulip, J. A. Ibers, Inorg. Chem. 19 (1980) 3183.Google Scholar

  • 37.

    P. B. Chock, J. Halpern, J. Am. Chem. Soc. 88 (1966) 3511.Google Scholar

  • 38.

    L. Vaska, Science 140 (1963) 809.Google Scholar

  • 39.

    L. Vaska, Acc. Chem. Res. 1 (1968) 335.Google Scholar

  • 40.

    B.R. James, N. A. Memon, Can. J. Chem. 46 (1968) 217.Google Scholar

  • 41.

    F. van Rantwijk, Th. G. Speek, H. van Bekkum, Rec. Trav. Chim. 91 (1972) 1057.Google Scholar

  • 42.

    L. Vaska, J. Am. Chem. Soc. 88 (1966) 4100.Google Scholar

  • 43.

    J. S. Valentine, J. Chem. Commun. (1973) 857.Google Scholar

  • 44.

    M. A. Bennett, D. L. Milner, J. Am. Chem. Soc. 91 (1969) 6983.Google Scholar

  • 45.

    M. A. Bennett, D. L. Milner, Chem. Commun. (1967) 581.Google Scholar

About the article

Received: 2016-06-15

Accepted: 2016-08-26

Published Online: 2016-09-24

Published in Print: 2017-03-01


Funding Source: Russian Science Foundation

Award identifier / Grant number: 14-35-00020

This work was financially supported by the Russian Science Foundation (project # 14-35-00020).


Citation Information: Zeitschrift für Physikalische Chemie, Volume 231, Issue 3, Pages 575–592, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2016-0824.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jan-Bernd Hövener, Andrey N. Pravdivtsev, Bryce Kidd, C. Russell Bowers, Stefan Glöggler, Kirill V. Kovtunov, Markus Plaumann, Rachel Katz-Brull, Kai Buckenmaier, Alexej Jerschow, Francesca Reineri, Thomas Theis, Roman V. Shchepin, Shawn Wagner, Pratip Bhattacharya, Niki M. Zacharias, and Eduard Y. Chekmenev
Angewandte Chemie International Edition, 2018
[2]
Jan-Bernd Hövener, Andrey N. Pravdivtsev, Bryce Kidd, C. Russell Bowers, Stefan Glöggler, Kirill V. Kovtunov, Markus Plaumann, Rachel Katz-Brull, Kai Buckenmaier, Alexej Jerschow, Francesca Reineri, Thomas Theis, Roman V. Shchepin, Shawn Wagner, Pratip Bhattacharya, Niki M. Zacharias, and Eduard Y. Chekmenev
Angewandte Chemie, 2018
[3]
Kirill V. Kovtunov, Ekaterina V. Pokochueva, Oleg G. Salnikov, Samuel F. Cousin, Dennis Kurzbach, Basile Vuichoud, Sami Jannin, Eduard Y. Chekmenev, Boyd M. Goodson, Danila A. Barskiy, and Igor V. Koptyug
Chemistry - An Asian Journal, 2018
[4]
Vladimir V. Zhivonitko, Ivan V. Skovpin, Kai C. Szeto, Mostafa Taoufik, and Igor V. Koptyug
The Journal of Physical Chemistry C, 2018

Comments (0)

Please log in or register to comment.
Log in