Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus


IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 1.021

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.327
Source Normalized Impact per Paper (SNIP) 2018: 0.391

Online
ISSN
2196-7156
See all formats and pricing
More options …
Volume 231, Issue 3

Issues

Triplet Charge Recombination in Heliobacterial Reaction Centers Does Not Produce a Spin-Polarized EPR Spectrum

Bryan Ferlez
  • Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alessandro Agostini / Donatella Carbonera / John H. Golbeck
  • Department of Biochemistry and Molecular Biology and Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States of America
  • Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Albertstr.19, 79104 Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Art van der Est
  • Corresponding author
  • Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Albertstr.19, 79104 Freiburg, Germany
  • Departments of Chemistry and Physics, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada L2S 3A1
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-08 | DOI: https://doi.org/10.1515/zpch-2016-0825

Abstract

In photosynthetic reaction centers, reduction of the secondary acceptors leads to triplet charge recombination of the primary radical pair (RP). This process is spin selective and in a magnetic field it populates only the T0 state of the donor triplet state. As a result, the triplet state of the donor has a distinctive spin polarization pattern that can be measured by transient electron paramagnetic resonance (TREPR) spectroscopy. In heliobacterial reaction centers (HbRCs), the primary donor, P800, is composed of two bacteriochlorophyll g′ molecules and its triplet state has not been studied as extensively as those of other reaction centers. Here, we present TREPR and optically detected magnetic resonance (ODMR) data of 3P800 and show that although it can be detected by ODMR it is not observed in the TREPR data. We demonstrate that the absence of the TREPR spectrum is a result of the fact that the zero-field splitting (ZFS) tensor of 3P800 is maximally rhombic, which results in complete cancelation of the absorptive and emissive polarization in randomly oriented samples.

Keywords: chlorophyll a; P800 bacteriochlorophyll g; photosynthesis; type I reaction center

Dedicated to: Kev Salikhov on the occasion of his 80th birthday.

References

  • 1.

    P. L. Dutton, J. S. Leigh, M. Seibert, Biochem. Biophys. Res. Commun. 46 (1972) 406.Google Scholar

  • 2.

    P. L. Dutton, J. S. Leigh, D. W. Reed, Biochim. Biophys. Acta 292 (1973) 654.Google Scholar

  • 3.

    J. S. Leigh, P. L. Dutton, Biochim. Biophys. Acta 357 (1974) 67.Google Scholar

  • 4.

    C. Wraight, J. Leigh, P. Dutton, R. Clayton, Biochim. Biophys. Acta 333 (1974) 401.Google Scholar

  • 5.

    M. C. Thurnauer, J. J. Katz, J. R. Norris, Proc. Natl. Acad. Sci. USA. 72 (1975) 3270.Google Scholar

  • 6.

    A. J. Hoff, H. Rademaker, R. Van Grondelle, L. N. Duysens, Biochim. Biophys. Acta 460 (1977) 547.Google Scholar

  • 7.

    A. Hoff, H. G. De Vries, Biochim. Biophys. Acta 503 (1978) 94.Google Scholar

  • 8.

    M. C. Thurnauer, Res. Chem. Intermed. 3 (1979) 197.Google Scholar

  • 9.

    H. Rademaker, A. J. Hoff, R. Van Grondelle, L. N. Duysens, Biochim. Biophys. Acta 592 (1980) 240.Google Scholar

  • 10.

    A. Rutherford, J. Mullet, Biochim. Biophys. Acta 635 (1981) 225.Google Scholar

  • 11.

    T. Swarthoff, P. Gast, A. Hoff, FEBS Lett. 127 (1981) 83.Google Scholar

  • 12.

    H. Den Blanken, A. Hoff, Biochim. Biophys. Acta 681 (1982) 365.Google Scholar

  • 13.

    P. Gast, T. Swarthoff, F. Ebskamp, A. Hoff, Biochim. Biophys. Acta 722 (1983) 163.Google Scholar

  • 14.

    A. Hoff, I. Proskuryakov, Chem. Phys. Lett. 115 (1985) 303.Google Scholar

  • 15.

    D. E. Budil, M. C. Thurnauer, Biochim. Biophys. Acta 1057 (1991) 1.Google Scholar

  • 16.

    F. Van Mieghem, K. Satoh, A. Rutherford, Biochim. Biophys. Acta 1058 (1991) 379.Google Scholar

  • 17.

    I. Sieckmann, K. Brettel, C. Bock, A. van der Est, D. Stehlik, Biochemistry 32 (1993) 4842.Google Scholar

  • 18.

    M. K. Bosch, I. I. Proskuryakov, P. Gast, A. J. Hoff, J. Phys. Chem. 100 (1996) 2384.Google Scholar

  • 19.

    A. Kamlowski, L. Frankemöller, A. van der Est, D. Stehlik, A. Holzwart, Ber. Bunsen. Phys. Chem. 100 (1996) 2045.Google Scholar

  • 20.

    G. P. Wiederrecht, W. A. Svec, M. R. Wasielewski, T. Galili, H. Levanon, J. Amer. Chem. Soc. 121 (1999) 7726.Google Scholar

  • 21.

    Y. Kandrashkin, P. Poddutoori, A. van der Est, Appl. Magn. Reson. 30 (2006) 605.Google Scholar

  • 22.

    Z. E. Dance, Q. Mi, D. W. McCamant, M. J. Ahrens, M. A. Ratner, M. R. Wasielewski, J. Phys. Chem. B 110 (2006) 25163.Google Scholar

  • 23.

    D. J. Weinberg, S. M. Dyar, Z. Khademi, M. Malicki, S. R. Marder, M. R. Wasielewski, E. A. Weiss, J. Amer. Chem. Soc. 136 (2014) 14513.Google Scholar

  • 24.

    S. P. McGlynn, T. Azumi, M. Kinoshita, Molecular Spectroscopy of the Triplet State, Englewood Cliffs: Prentice-Hall, 1969.Google Scholar

  • 25.

    F. Lendzian, R. Bittl, W. Lubitz, Photosynth. Res. 55 (1998) 189.Google Scholar

  • 26.

    A. Marchanka, M. Paddock, W. Lubitz, M. van Gastel, Biochemistry 46 (2007) 14782.Google Scholar

  • 27.

    A. Marchanka, W. Lubitz, M. Plato, M. van Gastel, Photosynth. Res. 120 (2014) 99.Google Scholar

  • 28.

    J. Norris, D. Budil, P. Gast, C. Chang, O. El-Kabbani, M. Schiffer, Proc. Natl. Acad. Sci. USA. 86 (1989) 4335.Google Scholar

  • 29.

    S. S. Thamarath, B. E. Bode, S. Prakash, K. B. Sai Sankar Gupta, A. Alia, G. Jeschke, J. Matysik, J. Amer. Chem. Soc. 134 (2012) 5921.Google Scholar

  • 30.

    H. A. Frank, M. B. McLean, K. Sauer, Proc. Natl. Acad. Sci. USA. 76 (1979) 5124.Google Scholar

  • 31.

    G. Hauska, T. Schoedl, H. Remigy, G. Tsiotis, Biochim. Biophys. Acta 1507 (2001) 260.Google Scholar

  • 32.

    W. Nitschke, U. Feiler, A. W. Rutherford, Biochemistry 29 (1990) 3834.Google Scholar

  • 33.

    M. Kobayashi, E. J. van de Meent, C. Erkelens, J. Amesz, I. Ikegami, T. Watanabe, Biochim. Biophys. Acta 1057 (1991) 89.Google Scholar

  • 34.

    I. Sarrou, Z. Khan, J. Cowgill, S. Lin, D. Brune, S. Romberger, J. H. Golbeck, K. E. Redding, Photosynth. Res. 111 (2012) 291.Google Scholar

  • 35.

    P. Beer-Romero, J. L. Favinger, H. Gest, FEMS Microbiol. Lett. 49 (1988) 451.Google Scholar

  • 36.

    M. Kobayashi, T. Hamano, M. Akiyama, T. Watanabe, K. Inoue, H. Oh-oka, J. Amesz, M. Yamamura, H. Kise, Anal. Chim. Acta 365 (1998) 199.Google Scholar

  • 37.

    B. Ferlez, W. Dong, R. Siavashi, K. Redding, H. J. Hou, J. H. Golbeck, A. van der Est, J. Phys. Chem. B 119 (2015) 13714.Google Scholar

  • 38.

    M. R. Fischer, Biochim. Biophys. Acta 1015 (1990) 471.Google Scholar

  • 39.

    W. Nitschke, P. Setif, U. Liebl, U. Feiler, A. W. Rutherford, Biochemistry 29 (1990) 11079.Google Scholar

  • 40.

    J. Vrieze, E. Van de Meent, A. Hoff, Biochemistry 37 (1998) 14900.Google Scholar

  • 41.

    M. Heinnickel, R. Agalarov, N. Svensen, C. Krebs, J. H. Golbeck, Biochemistry 45 (2006) 6756.Google Scholar

  • 42.

    F. Kleinherenbrink, J. Amesz, Biochim. Biophys. Acta 1143 (1993) 77.Google Scholar

  • 43.

    C. Klughammer, C. Hager, E. Padan, M. Schütz, U. Schreiber, Y. Shahak, G. Hauska, Photosynth. Res. 43 (1995) 27.Google Scholar

  • 44.

    B. Ferlez, J. B. Cowgill, W. Dong, C. Gisriel, S. Lin, M. Flores, K. Walters, D. Cetnar, K. E. Redding, J. H. Golbeck, Biochemistry 55 (2016) 2358.Google Scholar

  • 45.

    D. Carbonera, Photosynth. Res. 102 (2009) 403.Google Scholar

  • 46.

    D. Carbonera, G. Giacometti, G. Agostini, Appl. Magn. Reson. 3 (1992) 859.Google Scholar

  • 47.

    S. Santabarbara, E. Bordignon, R. C. Jennings, D. Carbonera, Biochemistry 41 (2002) 8184.Google Scholar

  • 48.

    D. A. Hartzler, D. M. Niedzwiedzki, D. A. Bryant, R. E. Blankenship, Y. Pushkar, S. Savikhin, J. Phys. Chem. B 118 (2014) 7221.Google Scholar

  • 49.

    F. A. Kleinherenbrink, T. J. Aartsma, J. Amesz, Biochim. Biophys. Acta 1057 (1991) 346.Google Scholar

  • 50.

    S. Neerken, J. Amesz, Biochim. Biophys. Acta 1507 (2001) 278.Google Scholar

  • 51.

    H. Vasmel, H. J. Den Blanken, J. T. Dijkman, A. J. Hoff, J. Amesz, Biochim. Biophys. Acta 767 (1984) 200.Google Scholar

About the article

Received: 2016-06-13

Accepted: 2016-09-13

Published Online: 2016-10-08

Published in Print: 2017-03-01


Citation Information: Zeitschrift für Physikalische Chemie, Volume 231, Issue 3, Pages 593–607, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2016-0825.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Zhihui He, Bryan Ferlez, Vasily Kurashov, Marcus Tank, John H. Golbeck, and Donald A. Bryant
Photosynthesis Research, 2019

Comments (0)

Please log in or register to comment.
Log in