Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus


IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 1.021

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.327
Source Normalized Impact per Paper (SNIP) 2018: 0.391

Online
ISSN
2196-7156
See all formats and pricing
More options …
Volume 231, Issue 3

Issues

Multi-Gaussian Monte Carlo Analysis of PELDOR Data in the Frequency Domain

Anna G. Matveeva
  • Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk 630090, Russian Federation
  • Novosibirsk State University, Novosibirsk 630090, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yulia V. Yushkova / Sergei V. Morozov
  • Novosibirsk State University, Novosibirsk 630090, Russian Federation
  • Vorozhtsov Novosibirsk Institute of Organic Chemistry, Novosibirsk 630090, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Igor A. Grygor’ev / Sergei A. Dzuba
  • Corresponding author
  • Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk 630090, Russian Federation
  • Novosibirsk State University, Novosibirsk 630090, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-26 | DOI: https://doi.org/10.1515/zpch-2016-0830

Abstract

Pulsed double electron–electron resonance technique (PELDOR or DEER) is often applied to study conformations and aggregation of spin-labelled macromolecules. Because of the ill-posed nature of the integral equation determining the distance distribution function, a regularization procedure is required to restrict the smoothness of the solution. In this work, we performed PELDOR measurements for new flexible nitroxide biradicals based on trolox, which is the synthetic analogue of α-tocopherol; spin-labelled trolox derivatives are investigated as potential anti-cancer drugs. We use regularization by an approximation of the solution with a sum of limited number of Gaussians, by varying their positions, widths and amplitudes. Their best-fitted values were found by a completely random Monte Carlo process. The use of the frequency-domain PELDOR data allowed diminution of the artifacts induced by spin–spin electron–nuclear and intermolecular electron–electron interactions. It was found that for the all biradicals studied, the use of three Gaussians was enough for good agreement with the experiments. The number of trials for obtaining satisfactory result was found to be quite reasonable, which is explained by presence of the singularity in the core of integral equation. The maxima of inter-spin distance distribution for different biradicals were found to vary between 1.5 and 2.3 nm, depending on the linkers between the Trolox core and nitroxides. The distance distributions around these positions reflect flexibility of the biradicals.

Keywords: biradicals; DEER; DNA; Fredholm equation regularization; Monte Carlo fitting; peptide antibiotics; RNA; spin labels; Trolox

Dedicated to: Kev Salikhov on the occasion of his 80th birthday.

References

  • 1.

    A. D. Milov, K. M. Salikhov, M. D. Schirov, Fiz. Tverd. Tela 23 (1981) 975.Google Scholar

  • 2.

    A. D. Milov, A. G. Maryasov, Yu. D. Tsvetkov, Appl. Magn. Reson. 15 (1998) 107.Google Scholar

  • 3.

    O. Schiemann, T. F. Prisner, Quart. Rev. Biophys. 40 (2007) 1.Google Scholar

  • 4.

    A. Savitsky, K. Möbius, Photosynth. Res. 102 (2009) 311.Google Scholar

  • 5.

    J. P. Klare, H.-J. Steinhoff, Photosynth. Res. 102 (2009) 377.Google Scholar

  • 6.

    G. W. Reginsson, O. Schiemann, Biochem. J. 434 (2011) 353.Google Scholar

  • 7.

    G. Jeschke, Ann. Rev. Phys. Chem. 63 (2012) 419.Google Scholar

  • 8.

    D. Goldfarb, Phys. Chem. Chem. Phys. 16 (2014) 9685.Google Scholar

  • 9.

    T. F. Prisner, A. Marko, S. Th. Sigurdsson, J. Magn. Reson. 252 (2015) 187.Google Scholar

  • 10.

    A. D. Milov, Y. D. Tsvetkov, J. Raap, M. De Zotti, F. Formaggio, C. Toniolo, Biopolym. 106 (2016) 6.Google Scholar

  • 11.

    G. Jeschke, A. Koch, U. Jonas, A. Godt, J. Magn. Reson. 155 (2002) 72.Google Scholar

  • 12.

    A. D. Milov, Y. D. Tsvetkov, F. Formaggio, S. Oancea, C. Toniolo, J. Raap, Phys. Chem. Chem. Phys. 6 (2004) 3596.Google Scholar

  • 13.

    M. K. Bowman, A. G. Maryasov, N. Kim, V. J. DeRose, Appl. Magn. Reson. 26 (2004) 23.Google Scholar

  • 14.

    G. Jeschke, G. Panek, A. Godt, A. Bender, H. Paulsen, Appl. Magn. Reson. 26 (2004) 223.Google Scholar

  • 15.

    G. Jeschke, A. Bender, H. Paulsen, H. Zimmermann, A. Godt, J. Magn. Reson. 169 (2004) 1.Google Scholar

  • 16.

    W.-Y. Chiang, P. P. Borbat, J. H. Freed, J. Magn. Reson. 172 (2005) 279.Google Scholar

  • 17.

    W.-Y. Chiang, P. P. Borbat, J. H. Freed, J. Magn. Reson. 177 (2005) 184.Google Scholar

  • 18.

    G. Jeschke, V. Chechik, P. Ionita, A. Godt, H. Zimmermann, J. Banham, C. R. Timmel, D. Hilger, H. Jung, Appl. Magn. Reson. 30 (2006) 473.Google Scholar

  • 19.

    S. Brandon, A. H. Beth, E. J. Hustedt, J. Magn. Reson. 218 (2012) 93.Google Scholar

  • 20.

    K. M. Salikhov, I. T. Khairuzhdinov, R. B. Zaripov, Appl. Magn. Reson. 45 (2014) 573.Google Scholar

  • 21.

    P. G. Fajer, M. Gyimesi, A. Málnási-Csizmadia, C. R. Bagshaw, K. Ilker Sen, L. Song, J. Phys. Condens. Matter 19 (2007) 285208.Google Scholar

  • 22.

    P. G. Fajer, L. Brown, L. Song, In: ESR Spectroscopy in Membrane Biophysics, (Eds. M. A. Hemminga, L. J. Berliner), Volume 27, Springer, NY (2007), P. 95.Google Scholar

  • 23.

    K. Ilker Sen, T. M. Logan, P. G. Fajer, Biochem. 46 (2007) 11639.Google Scholar

  • 24.

    V. N. Syryamina, R. I. Samoilova, Y. D. Tsvetkov, A. V. Ischenko, M. De Zotti, M. Gobbo, C. Toniolo, F. Formaggio, S. A. Dzuba, Appl. Magn. Reson. 47 (2016) 309.Google Scholar

  • 25.

    S. A. Dzuba, J. Magn. Reson. 269 (2016) 113.Google Scholar

  • 26.

    O. D. Zakharova, T. S. Frolova, Y. V. Yushkova, E. I. Chernyak, A. G. Pokrovsky, M. A. Pokrovsky, S. V. Morozov, O. I. Sinitsina, I. A. Grigor’ev, G. A. Nevinsky, Eur. J. Med. Chem. 122 (2016) 127.Google Scholar

  • 27.

    Yu. V. Yushkova, S. V. Morozov, E. I. Chernyak, I. A. Grygor’ev, Chem. Nat. Compd. 52 (2016) 972.Google Scholar

  • 28.

    H. Fonge, S. K. Chitneni, J. Lixin, K. Vunckx, K. Prinsen, J. Nuyts, L. Mortelmans, G. Bormans, Y. Ni, A. Verbruggen, Bioconjugate Chem. 18 (2007) 1924.Google Scholar

  • 29.

    I. A. Grygor’ev, L. B. Volodarsky, Zhurnal Organ. Khimii 2 (1974) 118.Google Scholar

  • 30.

    N. A. Kuznetsov, A. D. Milov, V. V. Koval, R. I. Samoilova, Y. A. Grishin, D. G. Knorre, Y. D. Tsvetkov, O. S. Fedorova, S. A. Dzuba, Phys. Chem. Chem. Phys. 11 (2009) 6826.Google Scholar

  • 31.

    A. D. Milov, Y. A. Grishin, S. A. Dzuba, Yu. D. Tsvetkov, Appl. Magn. Reson. 41 (2011) 59.Google Scholar

  • 32.

    C. Abé, D. Klose, F. Dietrich, W. H. Ziegler, Y. Polyhach, G. Jeschke, H.-J. Steinhoff, J. Magn. Reson. 216 (2012) 53.Google Scholar

About the article

Received: 2016-06-17

Accepted: 2016-10-06

Published Online: 2016-10-26

Published in Print: 2017-03-01


Citation Information: Zeitschrift für Physikalische Chemie, Volume 231, Issue 3, Pages 671–688, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2016-0830.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Marta De Zotti, Victoria N. Syryamina, Rohanah Hussain, Edoardo Longo, Giuliano Siligardi, Sergei A. Dzuba, Lorenzo Stella, and Fernando Formaggio
ChemBioChem, 2019, Volume 20, Number 16, Page 2125
[2]
Alexandra A Kuznetsova, Anna G Matveeva, Alexander D Milov, Yuri N Vorobjev, Sergei A Dzuba, Olga S Fedorova, and Nikita A Kuznetsov
Nucleic Acids Research, 2018
[3]
Victoria N. Syryamina, Marta De Zotti, Claudio Toniolo, Fernando Formaggio, and Sergei A. Dzuba
Physical Chemistry Chemical Physics, 2018
[4]
Anna G. Matveeva, Vyacheslav M. Nekrasov, and Alexander G. Maryasov
Physical Chemistry Chemical Physics, 2017
[5]
Ivan O. Timofeev, Olesya A. Krumkacheva, Matvey V. Fedin, Galina G. Karpova, and Elena G. Bagryanskaya
Applied Magnetic Resonance, 2017
[6]
Madhur Srivastava and Jack H. Freed
The Journal of Physical Chemistry Letters, 2017, Page 5648

Comments (0)

Please log in or register to comment.
Log in