Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus


IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 1.021

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.327
Source Normalized Impact per Paper (SNIP) 2018: 0.391

Online
ISSN
2196-7156
Alle Formate und Preise
Weitere Optionen …
Band 231, Heft 3

Hefte

Photoinduced Electron Transfer in Dyads with (R)-/(S)-Naproxen and (S)-Tryptophan

Ekaterina A. Khramtsova
  • Korrespondenzautor
  • Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 630090, Institutskaya str. 3, Novosibirsk, Russian Federation
  • Novosibirsk State University, 630090, Pirogova str. 2, Novosibirsk, Russian Federation
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Alexandra A. Ageeva
  • Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 630090, Institutskaya str. 3, Novosibirsk, Russian Federation
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Alexander A. Stepanov
  • Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 630090, Institutskaya str. 3, Novosibirsk, Russian Federation
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Viktor F. Plyusnin
  • Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 630090, Institutskaya str. 3, Novosibirsk, Russian Federation
  • Novosibirsk State University, 630090, Pirogova str. 2, Novosibirsk, Russian Federation
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Tatyana V. Leshina
  • Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 630090, Institutskaya str. 3, Novosibirsk, Russian Federation
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
Online erschienen: 14.10.2016 | DOI: https://doi.org/10.1515/zpch-2016-0842

Abstract

Short-lived intermediates arising from the donor-acceptor interaction of non-steroidal anti-inflammatory drug (NSAID) – (S)-naproxen (NPX) and its (R)-enantiomer with the tryptophan amino acid residue (Trp) have been studied by spin chemistry and photochemistry methods. The donor-acceptor interaction has caried out in a model linked system – dyad under the UV-irradiation. Interest in the NPX-Trp dyad diastereomers is connected with the possibility of using them as models of ligand-enzyme binding as long as amino acid residues are located at the enzyme’s active centers. It is these residues that interact with NSAID during the binding. It is widely thought that charge transfer processes are involved in the process of drug-enzyme binding. Withing this framework the role of charge transfer in NPX-Trp excited state quenching have been investigated. The analysis of the chemically induced dynamic nuclear polarization (CIDNP), as well as fluorescence kinetics and quantum yield in different polarity media has shown that the main channel of NPX fluorescence quenching is the intramolecular electron transfer between NPX and Trp fragments. Electron transfer rate constants and fluorescence quantum yields of diastereomers have demonstrated stereodifferentiation.

Keywords: chirality; CIDNP; dyads; fluorescence spectroscopy; intramolecular electron transfer

Dedicated to: Kev Salikhov on the occasion of his 80th birthday.

References

  • 1.

    A. M. Evans, Eur. J. Clin. Pharmacol. 42 (1992) 237.Google Scholar

  • 2.

    K. C. Duggan, M. J. Walters, J. Musee, J. M. Harp, J. R. Kiefer, J. A. Oaters, L. J. Marnett, J. Biol. Chem. 285 (2010) 34950.Google Scholar

  • 3.

    K. C. Duggan, D. J. Hermanson, J. Musee, J. J. Prusakiewicz, J. L. Scheib, B. D. Carter, S. Banerjee, J. A. Oaters, L. J. Marnett, Nature Chem. Biol. 7 (2011) 803.Google Scholar

  • 4.

    Q. Shen, L. Wang, H. Zhou, H. Jiang, L. Yu, S. Zeng, Acta Pharmacol. Sinica 34 (2013) 998.Google Scholar

  • 5.

    M. Gonzalez-Bejar, E. Alarcon, H. Poblete, J. C. Scaiano, J. Perez-Prieto, Biomacromolecules 11 (2010) 2255.Google Scholar

  • 6.

    M.-S. Kim, J.-E. Kim, D. Y. Lim, Z. Huang, H. Chen, A. Langfald, R. A. Lubet, C. J. Grubbs, Z. Dong, A. M. Bodel, J. Cancer Prev. 7 (2014) 236.Google Scholar

  • 7.

    I. Vaya, V. Lhiaubet-Vallet, M. C. Jimenez, M. A. Miranda, Chem. Soc. Rev. 43 (2014) 4102.Google Scholar

  • 8.

    V. Balzani, M. Venturi, A. Credi, Molecular Devices and Machines: A Journey into the Nanoworld, John Wiley & Sons, Germany (2006).Google Scholar

  • 9.

    K. Möbius, A. Savitsky, High-field EPR Spectroscopy on Proteins and Their Model Systems: Characterization of Transient Paramagnetic States, RSC, USA (2009).Google Scholar

  • 10.

    K. Ohkubo, S. Fukuzumi, Bull. Chem. Soc. Jpn. 82 (2009) 303.Google Scholar

  • 11.

    V. Lhiaubet-Vallet, F. Bosca, M. A. Miranda, J. Phys. Chem. B 111 (2007) 423.Google Scholar

  • 12.

    I. Vaya, M. C. Jimenez, M. A. Miranda, J. Phys. Chem. B 111 (2007) 9363.Google Scholar

  • 13.

    P. Bonancia, I. Vaya, M. J. Climent, T. Gustavsson, D. Markovitsi, M. C. Jimenez, M. A. Miranda, J. Phys. Chem. A 116 (2012) 8807.Google Scholar

  • 14.

    I. Vaya, I. Andreu, M. C. Jimenez, M. A. Miranda, Photochem. Photobiol. Sci. 13 (2014) 224.Google Scholar

  • 15.

    I. M. Magin, N. E. Polyakov, E. A. Khramtsova, A. I. Kruppa, Yu. P. Tsentalovich, T. V. Leshina, M. A. Miranda, E. Nuin, M. L. Marin, Chem. Phys. Lett. 516 (2011) 51.Google Scholar

  • 16.

    I. M. Magin, N. E. Polyakov, E. A. Khramtsova, A. I. Kruppa, A. A. Stepanov, P. A. Purtov, T. V. Leshina, Yu. P. Tsentalovich, M. A. Miranda, E. Nuin, M. L. Marin, Appl. Magn. Reson. 41 (2011) 205.Google Scholar

  • 17.

    E. A. Khramtsova, V. F. Plyusnin, I. M. Magin, A. I. Kruppa, N. E. Polyakov, T. V. Leshina, E. Nuin, M. L. Marin, M. A. Miranda, J. Phys. Chem. B 117 (2013) 16206.Google Scholar

  • 18.

    I. M. Magin, N. E. Polyakov, A. I. Kruppa, P. A. Purtov, T. V. Leshina, A. S. Kiryutin, M. A. Miranda, E. Nuin, M. L. Marin, Phys. Chem. Chem. Phys. 18 (2016) 901.Google Scholar

  • 19.

    E. A. Khramtsova, D. V. Sosnovsky, A. A. Ageeva, E. Nuin, M. L. Marin, P. A. Purtov, S. S. Borisevich, S. L. Khursan, H. D. Roth, M. A. Miranda, V. F. Plyusnin, T. V. Leshina, Phys. Chem. Chem. Phys. 18 (2016) 12733.Google Scholar

  • 20.

    D. Rehm, A. Weller, Bunsen–Ges. Phys. Chem. 73 (1969) 834.Google Scholar

  • 21.

    G. P. Cunningham, J. A. Vidulich, R. L. Kay, J. Chem. Eng. Data 12 (1967) 336.Google Scholar

  • 22.

    A. A. Mariott, E. R. Smith, Table of Dielectric Constants of Pure Liquids, NBS, USA (1951).Google Scholar

  • 23.

    Y. Y. Ahadov, Dielektrichiskie svoystva binarnich rastvorov, Nauka, Russia (1977).Google Scholar

  • 24.

    M. Goez, Chem. Phys. Let. 188 (1992) 451.Google Scholar

  • 25.

    U. Pischel, S. Abad, M. A. Miranda, Chem. Comm. 9 (2003) 1088.Google Scholar

  • 26.

    F. Bosca, M. A. Miranda, L. Vano, F. Vargas, J. Photochem. Photobiol. A 54 (1990) 131.Google Scholar

  • 27.

    G. L. Closs, M. S. Czeropski, J. Am. Chem. Soc. 99 (1977) 6127.Google Scholar

  • 28.

    W. Schwarz, K.-M. Dangel, G. Jones II, J. Bargon, J. Am. Chem. Soc. 104 (1982) 5686.Google Scholar

  • 29.

    N. N. Saprygina, O. B. Morozova, N. P. Gritsan, O. S. Fedorova, A. V. Yurkovskaya, Russ. Chem. Bull., Int. Ed. 60 (2011) 2529.Google Scholar

  • 30.

    M. Wegner, H. Fischer, M. Koeberg, J. W. Verhoeven, A. M. Oliver, M. N. Paddon-Row, Chem. Phys. 242 (1999) 227.Google Scholar

  • 31.

    N. S. Landolt-Bornstein, Numerical Data and Functional Relationship in Science and Technology: Magnetic Properties of Free Radicals, Springer-Verlag, Berlin (1988).Google Scholar

  • 32.

    S. E. Walden, R. A. Wheeler, J. Phys. Chem. 100 (1996) 1530.Google Scholar

  • 33.

    M. E. Michel-Beyerle, R. Haberkorn, W. Bube, E. Steffens, H. Schroeder, H. J. Neusser, E. W. Schlag, Chem. Phys. 17 (1976) 139.Google Scholar

  • 34.

    M. Bonifacic, D. Armstrong, I. Carmichael, K. Asmus, J. Phys. Chem. B 104 (2000) 643.Google Scholar

  • 35.

    J. Bargon, J. Am. Chem. Soc. 99 (1977) 8350.Google Scholar

  • 36.

    E. Schaffner, H. Fischer, J. Phys. Chem. 100 (1996) 1657.Google Scholar

  • 37.

    U. Wegner, H. Staerk, J. Phys. Chem. 99 (1995) 248.Google Scholar

  • 38.

    D. F. Eaton, Pure Appl. Chem. 60 (1988) 1107.Google Scholar

Artikelinformationen

Erhalten: 28.06.2016

Angenommen: 19.09.2016

Online erschienen: 14.10.2016

Erschienen im Druck: 01.03.2017


Quellenangabe: Zeitschrift für Physikalische Chemie, Band 231, Heft 3, Seiten 609–623, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2016-0842.

Zitat exportieren

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Zitierende Artikel

Hier finden Sie eine Übersicht über alle Crossref-gelisteten Publikationen, in denen dieser Artikel zitiert wird. Um automatisch über neue Zitierungen dieses Artikels informiert zu werden, aktivieren Sie einfach oben auf dieser Seite den „E-Mail-Alert: Neu zitiert“.

[1]
Aleksandra A. Ageeva, Simon V. Babenko, Nikolay E. Polyakov, and Tatyana V. Leshina
Mendeleev Communications, 2019, Jahrgang 29, Nummer 3, Seite 260
[2]
Aleksandra A. Ageeva, Ekaterina A. Khramtsova, Ilya M. Magin, Peter A. Purtov, Miguel A. Miranda, and Tatyana V. Leshina
Chemistry - A European Journal, 2018
[3]
Aleksandra A. Ageeva, Ekaterina A. Khramtsova, Ilya M. Magin, Denis A. Rychkov, Peter A. Purtov, Miguel A. Miranda, and Tatyana V. Leshina
Chemistry - A European Journal, 2018

Kommentare (0)