Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus


IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 1.021

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.327
Source Normalized Impact per Paper (SNIP) 2018: 0.391

Online
ISSN
2196-7156
See all formats and pricing
More options …
Volume 231, Issue 3

Issues

Multi-Frequency Pulsed Overhauser DNP at 1.2 Tesla

Philipp Schöps
  • Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Philipp E. Spindler
  • Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas F. Prisner
  • Corresponding author
  • Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-26 | DOI: https://doi.org/10.1515/zpch-2016-0844

Abstract

Dynamic nuclear polarization (DNP) is a methodology to increase the sensitivity of nuclear magnetic resonance (NMR) spectroscopy. It relies on the transfer of the electron spin polarization from a radical to coupled nuclear spins, driven by microwave excitation resonant with the electron spin transitions. In this work we explore the potential of pulsed multi-frequency microwave excitation in liquids. Here, the relevant DNP mechanism is the Overhauser effect. The experiments were performed with TEMPOL radicals in aqueous solution at room temperature using a Q-band frequency (1.2 T) electron paramagnetic resonance (EPR) spectrometer combined with a Minispec NMR spectrometer. A fast arbitrary waveform generator (AWG) enabled the generation of multi-frequency pulses used to either sequentially or simultaneously excite all three 14N-hyperfine lines of the nitroxide radical. The multi-frequency excitation resulted in a doubling of the observed DNP enhancements compared to single-frequency microwave excitation. Q-band free induction decay (FID) signals of TEMPOL were measured as a function of the excitation pulse length allowing the efficiency of the electron spin manipulation by the microwave pulses to be extracted. Based on this knowledge we could quantitatively model our pulsed DNP enhancements at 1.2 T by numerical solution of the Bloch equations, including electron spin relaxation and experimental parameters. Our results are in good agreement with theoretical predictions. Whereas for a narrow and homogeneous single EPR line continuous wave excitation leads to more efficient DNP enhancements compared to pulsed excitation for the same amount of averaged microwave power. The situation is different for radicals with several hyperfine lines or in the presence of inhomogeneous line broadening. In such cases pulsed single/multi-frequency excitation can lead to larger DNP enhancements.

This article offers supplementary material which is provided at the end of the article.

Keyword: EPR DNP Overhauser

Dedicated to: Kev Salikhov on the occasion of his 80th birthday.

References

  • 1.

    R. G. Griffin, T. F. Prisner, Phys. Chem. Chem. Phys. 12 (2010) 5737.Google Scholar

  • 2.

    D. A. Hall, D. C. Maus, G. J. Gerfen, S. J. Inati, L. R. Becerra, F. W. Dahlquist, R. G. Griffin, Science 276 (1997) 930.Google Scholar

  • 3.

    Q. Z. Ni, E. Daviso, T. V. Can, E. Markhasin, S. K. Jawla, T. M. Swager, R. J. Temkin, J. Herzfeld, R. G. Griffin, Accounts Chem. Res. 46 (2013) 1933.Google Scholar

  • 4.

    C. S. Song, K. N. Hu, C. G. Joo, T. M. Swager, R. G. Griffin, J. Am. Chem. Soc. 128 (2006) 11385.Google Scholar

  • 5.

    J. H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M. H. Lerche, R. Servin, M. Thaning, K. Golman, Proc. Natl. Acad. Sci. USA 100 (2003) 10158.Google Scholar

  • 6.

    F. A. Gallagher, M. I. Kettunen, S. E. Day, D. E. Hu, J. H. Ardenkjaer-Larsen, R. In’t Zandt, P. R. Jensen, M. Karlsson, K. Golman, M. H. Lerche, K. M. Brindle, Nature 453 (2008) 940.Google Scholar

  • 7.

    K. Golman, R. In’t Zandt, M. Lerche, R. Pehrson, J. H. Ardenkjaer-Larsen, Cancer Res. 66 (2006) 10855.Google Scholar

  • 8.

    B. D. Armstrong, J. Choi, C. Lopez, D. A. Wesener, W. Hubbell, S. Cavagnero, S. Han, J. Am. Chem. Soc. 133 (2011) 5987.Google Scholar

  • 9.

    T. F. Segawa, M. Doppelhauer, L. Garbuio, A. Doll, Y. O. Polyhach, G. Jeschke, J. Chem. Phys. 144 (2016) 194201.Google Scholar

  • 10.

    S. Hussain, J. M. Franck, S. Han, Angew. Chem. Int. Edit. 52 (2013) 1953.Google Scholar

  • 11.

    M. D. Lingwood, T. A. Siaw, N. Sailasuta, B. D. Ross, P. Bhattacharya, S. Han, J. Magn. Reson. 205 (2010) 247.Google Scholar

  • 12.

    M. D. Lingwood, T. A. Siaw, N. Sailasuta, O. A. Abulseoud, H. R. Chan, B. D. Ross, P. Bhattacharya, S. Han, Radiology 265 (2012) 418.Google Scholar

  • 13.

    J. G. Krummenacker, V. P. Denysenkov, M. Terekhov, L. M. Schreiber, T. F. Prisner, J. Magn. Reson. 215 (2012) 94.Google Scholar

  • 14.

    M. Terekhov, J. Krummenacker, V. Denysenkov, K. Gerz, T. Prisner, L. M. Schreiber, Magnet. Reson. Med. 75 (2016) 985.Google Scholar

  • 15.

    M. J. Prandolini, V. P. Denysenkov, M. Gafurov, B. Endeward, T. F. Prisner, J. Am. Chem. Soc. 131 (2009) 6090.Google Scholar

  • 16.

    T. Prisner, V. Denysenkov, D. Sezer, J. Magn. Reson. 264 (2016) 68.Google Scholar

  • 17.

    C. Griesinger, M. Bennati, H. M. Vieth, C. Luchinat, G. Parigi, P. Hoefer, F. Engelke, S. J. Glaser, V. Denysenkov, T. F. Prisner, Prog. Nucl. Magn. Reson. Spectrosc. 64 (2012) 4.Google Scholar

  • 18.

    T. V. Can, M. A. Caproini, F. Mentink-Vigier, B. Corzilius, J. J. Walish, M. Rosay, W. E. Maas, M. Baldus, S. Vega, T. M. Swager, R. G. Griffin, J. Chem. Phys. 141 (2014) 064202.Google Scholar

  • 19.

    S. Un, T. Prisner, R. T. Weber, M. J. Seaman, K. W. Fishbein, A. E. McDermott, D. J. Singel, R. G. Griffin, Chem. Phys. Lett. 189 (1992) 54.Google Scholar

  • 20.

    M. Alecci, D. J. Lurie, J. Magn. Reson. 138 (1999) 313.Google Scholar

  • 21.

    S. E. Korchak, A. S. Kiryutin, K. L. Ivanov, A. V. Yurkovskaya, Y. A. Grishin, H. Zimmermann, H.-M. Vieth, Appl. Magn. Reson. 37 (2009) 515.Google Scholar

  • 22.

    M.-T. Tuerke, M. Bennati, Phys. Chem. Chem. Phys. 13 (2011) 3630.Google Scholar

  • 23.

    A. S. Alexandrov, R. V. Archipov, A. A. Ivanov, O. I. Gnezdilov, M. R. Gafurov, V. D. Skirda, Appl. Magn. Reson. 45 (2014) 1275.Google Scholar

  • 24.

    E. A. Nasibulov, K. L. Ivanov, A. V. Yurkovskaya, H.-M. Vieth, Phys. Chem. Chem. Phys. 14 (2012) 6459.Google Scholar

  • 25.

    P. E. Spindler, Y. Zhang, B. Endeward, N. Gershernzon, T. E. Skinner, S. J. Glaser, T. F. Prisner, J. Magn. Reson. 218 (2012) 49.Google Scholar

  • 26.

    A. Doll, S. Pribitzer, R. Tschaggelar, G. Jeschke, J. Magn. Reson. 230 (2013) 27.Google Scholar

  • 27.

    H. C. Dorn, T. E. Glass, R. Gitti, K. H. Tsai, Appl. Magn. Reson. 2 (1991) 9.Google Scholar

  • 28.

    R. Kausik, S. Han, Phys. Chem. Chem. Phys. 13 (2011) 7732.Google Scholar

  • 29.

    J. M. Franck, J. A. Scott, S. Han, J. Am. Chem. Soc. 135 (2013) 4175.Google Scholar

  • 30.

    O. Jakdetchai, V. Denysenkoy, J. Becker-Baldus, B. Dutagaci, T. F. Prisner, C. Glaubitz, J. Am. Chem. Soc. 136 (2014) 15533.Google Scholar

  • 31.

    G. Sachs, W. Stoecklein, B. Bail, E. Dormann, M. Schwoerer, Chem. Phys. Lett. 89 (1982) 179.Google Scholar

  • 32.

    F. Bloch, Phys. Rev. 70 (1946) 460.Google Scholar

  • 33.

    K. H. Hausser, D. Stehlik, Adv. Magn. Reson. 3 (1968) 79.Google Scholar

  • 34.

    J. S. Hyde, J. C. W. Chen, J. H. Freed, J. Chem. Phys. 48 (1968) 4211.Google Scholar

  • 35.

    D. Sezer, Phys. Chem. Chem. Phys. 16 (2014) 1022.Google Scholar

About the article

Received: 2016-06-30

Accepted: 2016-07-20

Published Online: 2016-08-26

Published in Print: 2017-03-01


Citation Information: Zeitschrift für Physikalische Chemie, Volume 231, Issue 3, Pages 561–573, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2016-0844.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Arnab Dey, Abhishek Banerjee, and Narayanan Chandrakumar
The Journal of Physical Chemistry B, 2017, Volume 121, Number 29, Page 7156

Comments (0)

Please log in or register to comment.
Log in