Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus


IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 1.021

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.327
Source Normalized Impact per Paper (SNIP) 2018: 0.391

Online
ISSN
2196-7156
See all formats and pricing
More options …
Volume 231, Issue 7-8

Issues

NMR Studies of Lithium Diffusion in Li3(NH2)2I Over Wide Range of Li+ Jump Rates

Alexander V. Skripov
  • Corresponding author
  • Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi 18, Ekaterinburg 620990, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kai Volgmann
  • Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover, Callinstr. 3-3a, Hannover 30167, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C. Vinod Chandran
  • Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover, Callinstr. 3-3a, Hannover 30167, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roman V. Skoryunov
  • Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi 18, Ekaterinburg 620990, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olga A. Babanova
  • Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi 18, Ekaterinburg 620990, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexei V. Soloninin
  • Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi 18, Ekaterinburg 620990, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shin-ichi Orimo
  • Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
  • WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paul Heitjans
  • Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover, Callinstr. 3-3a, Hannover 30167, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-08 | DOI: https://doi.org/10.1515/zpch-2016-0925

Abstract

We have studied the Li diffusion in the complex hydride Li3(NH2)2I which appears to exhibit fast Li ion conduction. To get a detailed insight into the Li motion, we have applied 7Li nuclear magnetic resonance spectroscopy methods, such as spin-lattice relaxation in the laboratory and rotating frames of reference, as well as spin-alignment echo. This combined approach allows us to probe Li jump rates over the wide dynamic range (~102–109 s−1). The spin-lattice relaxation data in the range 210–410 K can be interpreted in terms of a thermally-activated Li jump process with a certain distribution of activation energies. However, the low-temperature spin-alignment echo decays at T≤200 K suggest the presence of another Li jump process with the very low effective activation energy.

Keywords: complex hydride; ion diffusion; nuclear magnetic resonance; spin-alignment echo; spin-lattice relaxation

References

  • 1.

    M. Matsuo, S. Orimo, Adv. Energy Mater. 1 (2011) 161.Google Scholar

  • 2.

    M. Matsuo, S. Kuromoto, S. Sato, H. Oguchi, H. Takamura, S. Orimo, Appl. Phys. Lett. 100 (2012) 203904.Google Scholar

  • 3.

    P. E. de Jongh, D. Blanchard, M. Matsuo, T. J. Udovic, S. Orimo, Appl. Phys. A Mater. Sci. Process. 122 (2016) 1.Google Scholar

  • 4.

    M. Matsuo, Y. Nakamori, S. Orimo, H. Maekawa, H. Takamura, Appl. Phys. Lett. 91 (2007) 224103.Google Scholar

  • 5.

    H. Maekawa, M. Matsuo, H. Takamura, M. Ando, Y. Noda, T. Karahashi, S. Orimo, J. Am. Chem. Soc. 131 (2009) 894.Google Scholar

  • 6.

    M. Matsuo, A. Remhof, P. Martelli, R. Caputo, M. Ernst, Y. Miura, T. Sato, H. Oguchi, H. Maekawa, H. Takamura, A. Borgschulte, A. Züttel, S. Orimo, J. Am. Chem. Soc. 131 (2009) 16389.Google Scholar

  • 7.

    B. A. Boukamp, R. A. Huggins, Phys. Lett. A 72 (1979) 464.Google Scholar

  • 8.

    M. B. Ley, D. B. Ravnsbæk, Y. Filinchuk, Y. S. Lee, R. Janot, Y. W. Cho, J. Skibsted, T. R. Jensen, Chem. Mater. 24 (2012) 1654.Google Scholar

  • 9.

    M. B. Ley, S. Boulineau, R. Janot, Y. Filinchuk, T. R. Jensen, J. Phys. Chem. C 116 (2012) 21267.Google Scholar

  • 10.

    T. J. Udovic, M. Matsuo, A. Unemoto, N. Verdal, V. Stavila, A. V. Skripov, J. J. Rush, H. Takamura, S. Orimo, Chem. Commun. 50 (2014) 3750.Google Scholar

  • 11.

    T. J. Udovic, M. Matsuo, W. S. Tang, H. Wu, V. Stavila, A. V. Soloninin, R. V. Skoryunov, O. A. Babanova, A. V. Skripov, J. J. Rush, A. Unemoto, H. Takamura, S. Orimo, Adv. Mater. 26 (2014) 7622.Google Scholar

  • 12.

    W. S. Tang, M. Matsuo, H. Wu, V. Stavila, W. Zhou, A. Talin, A. V. Soloninin, R. V. Skoryunov, O. A. Babanova, A. V. Skripov, A. Unemoto, S. Orimo, T. J. Udovic, Adv. Energy Mater. 6 (2016) 1502237.Google Scholar

  • 13.

    W. S. Tang, K. Yoshida, A. V. Soloninin, R. V. Skoryunov, O. A. Babanova, A. V. Skripov, M. Dimitrievska, V. Stavila, S. Orimo, T. J. Udovic, ACS Energy Lett. 1 (2016) 659.Google Scholar

  • 14.

    A. V. Skripov, A. V. Soloninin, M. B. Ley, T. R. Jensen, Y. Filinchuk, J. Phys. Chem. C 117 (2013) 14965.Google Scholar

  • 15.

    Y. S. Lee, M. B. Ley, T. R. Jensen, Y. W. Cho, J. Phys. Chem. C 120 (2016) 19035.Google Scholar

  • 16.

    M. Matsuo, T. Sato, Y. Miura, H. Oguchi, Y. Zhou, H. Maekawa, H. Takamura, S. Orimo, Chem. Mater. 22 (2010) 2702.Google Scholar

  • 17.

    A. V. Skripov, A. V. Soloninin, O. A. Babanova, R. V. Skoryunov, J. Alloys Compd. 645 (2015) S428.Google Scholar

  • 18.

    C. Vinod Chandran, P. Heitjans, Ann. Rep. NMR Spectrosc. 89 (2016) 1.Google Scholar

  • 19.

    A. V. Skripov, R. V. Skoryunov, A. V. Soloninin, O. A. Babanova, M. Matsuo, S. Orimo, J. Phys. Chem. C 119 (2015) 13459.Google Scholar

  • 20.

    D. C. Look, I. J. Lowe, J. Chem. Phys. 44 (1966) 2995.Google Scholar

  • 21.

    D. C. Ailion, C. P. Slichter, Phys. Rev. 137 (1965) A235.Google Scholar

  • 22.

    H. W. Spiess, J. Chem. Phys. 72 (1980) 6755.Google Scholar

  • 23.

    R. Böhmer, T. Jörg, F. Qi, A. Titze, Chem. Phys. Lett. 316 (2000) 419.Google Scholar

  • 24.

    F. Qi, C. Rier, R. Böhmer, W. Franke, P. Heitjans, Phys. Rev. B 72 (2005) 104301.Google Scholar

  • 25.

    M. Wilkening, P. Heitjans, Solid State Ionics 177 (2006) 3031.Google Scholar

  • 26.

    M. Wilkening, P. Heitjans, ChemPhysChem 13 (2012) 53.CrossrefGoogle Scholar

  • 27.

    M. Wilkening, P. Heitjans, Phys. Rev. B 77 (2008) 024311.Google Scholar

  • 28.

    J. Jeener, P. Broekaert, Phys. Rev. 157 (1967) 232.Google Scholar

  • 29.

    A. Abragam, The Principles of Nuclear Magnetism, Clarendon Press, Oxford (1961).Google Scholar

  • 30.

    J. T. Markert, E. J. Cotts, R. M. Cotts, Phys. Rev. B 37 (1988) 6446.Google Scholar

  • 31.

    A. Kuhn, M. Kunze, P. Sreeraj, H.-D. Wiemhöfer, V. Thangadurai, M. Wilkening, P. Heitjans, Solid State Nucl. Magn. Reson. 42 (2012) 2.Google Scholar

  • 32.

    V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, Cryst. Growth Des. 14 (2014) 3576.Google Scholar

About the article

Received: 2016-11-02

Accepted: 2017-01-18

Published Online: 2017-05-08

Published in Print: 2017-07-26


Citation Information: Zeitschrift für Physikalische Chemie, Volume 231, Issue 7-8, Pages 1455–1465, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2016-0925.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in