Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus

IMPACT FACTOR 2017: 1.144
5-year IMPACT FACTOR: 1.144

CiteScore 2017: 1.08

SCImago Journal Rank (SJR) 2017: 0.495
Source Normalized Impact per Paper (SNIP) 2017: 0.495

See all formats and pricing
More options …
Volume 231, Issue 9


Micro-Raman Scattering of Nanoscale Silicon in Amorphous and Porous Silicon

Sangeetha Periasamy
  • Department of Laser Studies, School of Physics, Madurai Kamaraj University, Madurai-625 021, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sasirekha Venkidusamy / Ragavendran Venkatesan
  • Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai-625 021, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jeyanthinath Mayandi
  • Corresponding author
  • Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai-625 021, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joshua Pearce
  • Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Josefine Helene Selj
  • Department of Solar Energy, Institute for Energy Technology, Instituttveien 18, Kjeller 2007, Norway
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ramakrishnan Veerabahu
Published Online: 2017-03-15 | DOI: https://doi.org/10.1515/zpch-2016-0961


The size effect of nanoscale silicon in both amorphous and porous silicon was investigated with micro-Raman spectroscopy. Silicon nanostructures in amorphous silicon were deposited on quartz substrates by plasma enhanced chemical vapor deposition (PECVD) with deposition powers of 15, 30 and 50 W. Micro-Raman spectra of the nanostructured silicon show the T2g Raman active mode shifting from the 521 cm−1 crystalline Si Raman line to 494, 499 and 504 cm−1 as deposition power increased. Large Raman mode shifts, up to 27 cm−1 and broadening up to 23 cm−1 of the T2g Raman-active mode is attributed to a phonon confinement effect. The analysis of micro-Raman scattering data is useful to understand the role of deposition condition of the silicon sample. In addition, micro-Raman scattering intensity of porous silicon prepared using various current densities such as 10, 50 and 125 mA/cm2 has also been investigated. The effect of phonon confinement on the nanoscale porous silicon has been quantified. The relationship between Raman shift and stress on the porous silicon has been evaluated.

Keywords: amorphous silicon; micro-Raman; porous silicon; Raman shift and stress; scattering


  • 1.

    V. Andrei, K. Bethkea, K. Rademann, Energy Environ. Sci. 9 (2016) 1528.CrossrefGoogle Scholar

  • 2.

    J. M. Pearce, N. Podraza, R. W. Collins, M. M. Al-Jassim, K. M. Jones, J. Deng, C. R. Wronski. J. Appl. Phys. 101 (2007) 114301.CrossrefGoogle Scholar

  • 3.

    N. Sánchez Castro, M. A. Palomino-Ovando, D. Estrada-Wiese, J. A. del Río, M. B. de la Mora, R. Doti, J. Faubert, J. E. Lugo. Mesoporous Biomater 3 (2016) 15–26.Google Scholar

  • 4.

    S. Guha, P. Steiner, W. Lang, J. Appl. Phys. 79 (1996) 8664.CrossrefGoogle Scholar

  • 5.

    A. M. Marmorstein, A. T. Voutsas, R. Solanki, Solid State Electron. 43 (1999) 305.CrossrefGoogle Scholar

  • 6.

    Y. Kang, Y. Qiu, Z. Lei, M. Hu, Opt. Laser. Eng. 43 (2005) 847.CrossrefGoogle Scholar

  • 7.

    S. Y. Myong, S. W. Kwon, J. H. Kwak, K. S. Lim, J. M. Pearce, M. Konagai, 4th World Conference on Photovoltaic Energy Conversion Proceedings, Waikoloa, HI, USA, (2006) 492.Google Scholar

  • 8.

    X. L. Wu, G. G. Siu, S. Tong, X. N. Liu, F. Yan, S. S. Jiang, X. K. Zhang, D. Feng, Appl. Phys. Lett. 69 (1996) 523.CrossrefGoogle Scholar

  • 9.

    J. Selj, A. Thogersen, S. E. Foss, E. S. Marstein, Thin Solid Films 519 (2011) 2998.CrossrefGoogle Scholar

  • 10.

    I. D. Wolf, Semicond. Sci. Technol. 11 (1996) 139.CrossrefGoogle Scholar

  • 11.

    O. Tuzun, A. Slaoui, S. Roques, A. Focsa, F. Jomard, D. Ballutaud, Thin Solid Films 517 (2009) 6358.CrossrefGoogle Scholar

  • 12.

    N. P. Meshram, A. Kumbhar, R.O. Dusane, Thin Solid Films 519 (2011) 4609.CrossrefGoogle Scholar

  • 13.

    D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, Q. Wang, J. Appl. Phys. 94 (2003) 2930.CrossrefGoogle Scholar

  • 14.

    M. Benyoucel, M. Kuball, J. Appl. Phys. 89 (2001) 7903.CrossrefGoogle Scholar

  • 15.

    Z. Iqbal, S. Veprek, J. Phys. C. Solid State Phys. 15 (1982) 377.CrossrefGoogle Scholar

  • 16.

    D. Wen-Ge, Y. Jing, M. Ling-Hai, W. Shu-Jie, Y. Wei, F. Guang-Sheng, Commun. Theor. Phys. 55 (2011) 688.CrossrefGoogle Scholar

  • 17.

    Y. Chen, B. Peng, B. Wang, J. Phys. Chem. C 111 (2007) 5855.Google Scholar

  • 18.

    M. J. Konstantinovic, S. Bersier, X. Wang, M. Hayne, P. Lievens, R. E. Silverans, V. V. Moshchalkov, Phy. Rev. B 66 (2002) 161311(R).CrossrefGoogle Scholar

  • 19.

    S. Trusso, C. Vasi, M. Allegrini, F. Fuso, G. Pennelli, J. Vac. Sci. Technol. B 17 (1999) 468.CrossrefGoogle Scholar

  • 20.

    Z. Sui, P. P. Leong, I. P. Herman, G. S. Higashi, H. Temkin, Appl. Phys. Lett. 60 (1992) 2086.CrossrefGoogle Scholar

  • 21.

    Y. Duan, J. F. Kong, W. Z. Shen, J. Raman Spectrosc. 43 (2012) 756.CrossrefGoogle Scholar

  • 22.

    T. D. Kang, H. Lee, S. J. Park, J. Jang, S. Lee, J. Appl. Phys. 92 (2002) 2467.CrossrefGoogle Scholar

  • 23.

    Q. Li, W. Qui, H. Tan, J. Guo, Y. Kang, Opt. Laser. Eng. 48 (2010) 119.CrossrefGoogle Scholar

  • 24.

    L. Zhen-kun, K. Yi-Lan, H. Ming, Q. Yu, X. Han, N. Hong-Pan, Chin. Phys. Lett. 21 (2004) 403.CrossrefGoogle Scholar

  • 25.

    S. K. Deb, N. Mathur, A. P. Roy, S. Banerjee, A. Sadesai, Solid State Commun. 101 (1997) 283.CrossrefGoogle Scholar

  • 26.

    G.-R. Lin, Y.-H. Lin, Y.-H. Pai, F.-S. Meng, Opt. Express 19 (2011) 597.CrossrefPubMedGoogle Scholar

  • 27.

    J. H. Selj, A. Thogersen, S. E. Foss, E. S. Marstein, J. Appl. Phys. 107 (2010) 074904.CrossrefGoogle Scholar

  • 28.

    S. Sahoo, S. Dhara, S. Mahadevan, A. K. Arora, J. Nanosci. Nanotechnol. 9 (2009) 5604.CrossrefPubMedGoogle Scholar

  • 29.

    H. S. Mavi, B. G. Rasheed, R. K. Soni, S. C. Abbi, K. P. Jain, Thin Solid Films 397 (2001) 125.CrossrefGoogle Scholar

About the article

Received: 2016-12-29

Accepted: 2017-02-07

Published Online: 2017-03-15

Published in Print: 2017-09-26

Citation Information: Zeitschrift für Physikalische Chemie, Volume 231, Issue 9, Pages 1585–1598, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2016-0961.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in