Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus

12 Issues per year


IMPACT FACTOR 2016: 1.012

CiteScore 2016: 0.99

SCImago Journal Rank (SJR) 2016: 0.463
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
2196-7156
See all formats and pricing
More options …
Volume 232, Issue 2

Issues

Isomer Identification in Flames with Double-Imaging Photoelectron/Photoion Coincidence Spectroscopy (i2PEPICO) using Measured and Calculated Reference Photoelectron Spectra

Julia Pieper / Steffen Schmitt / Christian Hemken
  • Physical Chemistry I, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
  • Physico Chemical Fundamentals of Combustion (PCFC), RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Emma Davies / Julia Wullenkord / Andreas Brockhinke / Julia Krüger
  • Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, B.P. 48, 91192 Gif-sur-Yvette, France
  • Continental AG, Vahrenwalder Straße 9, 30165 Hannover, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gustavo A. Garcia / Laurent Nahon / Arnas Lucassen / Wolfgang Eisfeld
  • Theoretical Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katharina Kohse-Höinghaus
Published Online: 2017-10-23 | DOI: https://doi.org/10.1515/zpch-2017-1009

Abstract

Double-imaging photoelectron/photoion coincidence (i2PEPICO) spectroscopy using a multiplexing, time-efficient, fixed-photon-energy approach offers important opportunities of gas-phase analysis. Building on successful applications in combustion systems that have demonstrated the discriminative power of this technique, we attempt here to push the limits of its application further to more chemically complex combustion examples. The present investigation is devoted to identifying and potentially quantifying compounds featuring five heavy atoms in laminar, premixed low-pressure flames of hydrocarbon and oxygenated fuels and their mixtures. In these combustion examples from flames of cyclopentene, iso-pentane, iso-pentane blended with dimethyl ether (DME), and diethyl ether (DEE), we focus on the unambiguous assignment and quantitative detection of species with the sum formulae C5H6, C5H7, C5H8, C5H10, and C4H8O in the respective isomer mixtures, attempting to provide answers to specific chemical questions for each of these examples. To analyze the obtained i2PEPICO results from these combustion situations, photoelectron spectra (PES) from pure reference compounds, including several examples previously unavailable in the literature, were recorded with the same experimental setup as used in the flame measurements. In addition, PES of two species where reference spectra have not been obtained, namely 2-methyl-1-butene (C5H10) and the 2-cyclopentenyl radical (C5H7), were calculated on the basis of high-level ab initio calculations and Franck-Condon (FC) simulations. These reference measurements and quantum chemical calculations support the early fuel decomposition scheme in the cyclopentene flame towards 2-cyclopentenyl as the dominant fuel radical as well as the prevalence of branched intermediates in the early fuel destruction reactions in the iso-pentane flame, with only minor influences from DME addition. Furthermore, the presence of ethyl vinyl ether (EVE) in DEE flames that was predicted by a recent DEE combustion mechanism could be confirmed unambiguously. While combustion measurements using i2PEPICO can be readily obtained in isomer-rich situations, we wish to highlight the crucial need for high-quality reference information to assign and evaluate the obtained spectra.

This article offers supplementary material which is provided at the end of the article.

Keywords: 3-buten-1-ol; 3-buten-2-ol; combustion chemistry; cyclopentadiene; cyclopentene; 2-cyclopentenyl radical; ethyl vinyl ether; iso-butanal; iso-butenol; laminar flames; 2-methoxypropene; 2-methyl-1-buten-3-yne; 2-methyl-1-butene; 2-methyl-2-butene; 3-methyl-1-butene; methyl ethyl ketone; n-butanal; 1,3-pentadiene; 1,4-pentadiene; 1-pentene; 2-pentene; PEPICO; photoelectron spectra; tetrahydrofuran

References

  • 1.

    O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, C. A. Taatjes, Science 335 (2012) 204.PubMedCrossrefGoogle Scholar

  • 2.

    S. R. Leone, M. Ahmed, K. R. Wilson, Phys. Chem. Chem. Phys. 12 (2010) 6564.PubMedCrossrefGoogle Scholar

  • 3.

    P. Hemberger, M. Steinbauer, M. Schneider, I. Fischer, M. Johnson, A. Bodi, T. Gerber, J. Phys. Chem. A 114 (2010) 4698.CrossrefPubMedGoogle Scholar

  • 4.

    M. Steinbauer, J. Giegerich, K. H. Fischer, I. Fischer, J. Chem. Phys. 137 (2012) 014303.PubMedCrossrefGoogle Scholar

  • 5.

    F. Jiao, J. Li, X. Pan, J. Xiao, H. Li, H. Ma, M. Wei, Y. Pan, Z. Zhou, M. Li, S. Miao, J. Li, Y. Zhu, D. Xiao, T. He, J. Yang, F. Qi, Q. Fu, X. Bao, Science 351 (2016) 1065.CrossrefPubMedGoogle Scholar

  • 6.

    F. Holzmeier, M.-P. Herbert, I. Fischer, M. Steglich, A. Bodi, P. Hemberger, J. Anal. Appl. Pyrolysis 124 (2017) 454.CrossrefGoogle Scholar

  • 7.

    F. Qi, Proc. Combust. Inst. 34 (2013) 33.CrossrefGoogle Scholar

  • 8.

    N. Hansen, T. A. Cool, P. R. Westmoreland, K. Kohse-Höinghaus, Prog. Energy Combust. Sci. 35 (2009) 168.CrossrefGoogle Scholar

  • 9.

    Z. S. Li, B. Li, Z. W. Sun, X. S. Bai, M. Aldén, Combust. Flame 157 (2010) 1087.CrossrefGoogle Scholar

  • 10.

    K. Kohse-Höinghaus, Chem. Eur. J. 22 (2016) 13390.CrossrefGoogle Scholar

  • 11.

    T. Lu, C. K. Law, Prog. Energy Combust. Sci. 35 (2009) 192.CrossrefGoogle Scholar

  • 12.

    K. Moshammer, A. W. Jasper, D. M. Popolan-Vaida, Z. Wang, V. S. Bhavani Shankar, L. Ruwe, C. A. Taatjes, P. Dagaut, N. Hansen, J. Phys. Chem. A 120 (2016) 7890.CrossrefGoogle Scholar

  • 13.

    J. Zádor, H. Huang, O. Welz, J. Zetterberg, D. L. Osborn, C. A. Taatjes, Phys. Chem. Chem. Phys. 15 (2013) 10753.PubMedCrossrefGoogle Scholar

  • 14.

    Z. Wang, L. Zhang, K. Moshammer, D. M. Popolan-Vaida, V. S. Bhavani Shankar, A. Lucassen, C. Hemken, C. A. Taatjes, S. R. Leone, K. Kohse-Höinghaus, N. Hansen, P. Dagaut, S. M. Sarathy, Combust. Flame 164 (2016) 386.CrossrefGoogle Scholar

  • 15.

    F. Battin-Leclerc, O. Herbinet, P.-A. Glaude, R. Fournet, Z. Zhou, L. Deng, H. Guo, M. Xie, F. Qi, Angew. Chem. Int. Ed. 49 (2010) 3169.CrossrefGoogle Scholar

  • 16.

    P. T. Lynch, T. P. Troy, M. Ahmed, R. S. Tranter, Anal. Chem. 87 (2015) 2345.CrossrefPubMedGoogle Scholar

  • 17.

    L. Ruwe, K. Moshammer, N. Hansen, K. Kohse-Höinghaus, Combust. Flame 175 (2017) 34.CrossrefGoogle Scholar

  • 18.

    L. Seidel, K. Moshammer, X. Wang, T. Zeuch, K. Kohse-Höinghaus, F. Mauss, Combust. Flame 162 (2015) 2045.CrossrefGoogle Scholar

  • 19.

    Y. Li, F. Qi, Acc. Chem. Res. 43 (2010) 68.CrossrefPubMedGoogle Scholar

  • 20.

    N. Hansen, M. Schenk, K. Moshammer, K. Kohse-Höinghaus, Combust. Flame 180 (2017) 250.CrossrefGoogle Scholar

  • 21.

    L. S. Tran, B. Sirjean, P. A. Glaude, R. Fournet, F. Battin-Leclerc, Energy 43 (2012) 4.CrossrefGoogle Scholar

  • 22.

    S. S. Merchant, C. F. Goldsmith, A. G. Vandeputte, M. P. Burke, S. J. Klippenstein, W. H. Green, Combust. Flame 162 (2015) 3658.CrossrefGoogle Scholar

  • 23.

    C.-W. Zhou, Y. Li, E. O’Connor, K. P. Somers, S. Thion, C. Keesee, O. Mathieu, E. L. Petersen, T. A. DeVerter, M. A. Oehlschlaeger, G. Kukkadapu, C.-J. Sung, M. Alrefae, F. Khaled, A. Farooq, P. Dirrenberger, P.-A. Glaude, F. Battin-Leclerc, J. Santner, Y. Ju, T. Held, F. M. Haas, F. L. Dryer, H. J. Curran, Combust. Flame 167 (2016) 353.CrossrefGoogle Scholar

  • 24.

    S. M. Sarathy, P. Oßwald, N. Hansen, K. Kohse-Höinghaus, Prog. Energy Combust. Sci. 44 (2014) 40.CrossrefGoogle Scholar

  • 25.

    K. Kohse-Höinghaus, P. Oßwald, T. A. Cool, T. Kasper, N. Hansen, F. Qi, C. K. Westbrook, P. R. Westmoreland, Angew. Chem. Int. Ed. 49 (2010) 3572.CrossrefGoogle Scholar

  • 26.

    N. Hansen, T. Kasper, S. J. Klippenstein, P. R. Westmoreland, M. E. Law, C. A. Taatjes, K. Kohse-Höinghaus, J. Wang, T. A. Cool, J. Phys. Chem. A 111 (2007) 4081.PubMedCrossrefGoogle Scholar

  • 27.

    B. Brehm, E. von Puttkamer, Z. Naturforsch. A 22 (1967) 8.Google Scholar

  • 28.

    A. Bodi, B. Sztáray, T. Baer, M. Johnson, T. Gerber, Rev. Sci. Instrum. 78 (2007) 084102.CrossrefPubMedGoogle Scholar

  • 29.

    A. T. J. B. Eppink, D. H. Parker, Rev. Sci. Instrum. 68 (1997) 3477.CrossrefGoogle Scholar

  • 30.

    B. Sztáray, T. Baer, Rev. Sci. Instrum. 74 (2003) 3763.CrossrefGoogle Scholar

  • 31.

    X. Tang, X. Zhou, M. Niu, S. Liu, J. Sun, X. Shan, F. Liu, L. Sheng, Rev. Sci. Instrum. 80 (2009) 113101.CrossrefPubMedGoogle Scholar

  • 32.

    A. Bodi, P. Hemberger, T. Gerber, B. Sztáray, Rev. Sci. Instrum. 83 (2012) 083105.CrossrefPubMedGoogle Scholar

  • 33.

    G. A. Garcia, B. K. Cunha de Miranda, M. Tia, S. Daly, L. Nahon, Rev. Sci. Instrum. 84 (2013) 053112.CrossrefPubMedGoogle Scholar

  • 34.

    J. C. Poully, J. P. Schermann, N. Nieuwjaer, F. Lecomte, G. Grégoire, C. Desfrançois, G. A. Garcia, L. Nahon, D. Nandi, L. Poisson, M. Hochlaf, Phys. Chem. Chem. Phys. 12 (2010) 3566.PubMedCrossrefGoogle Scholar

  • 35.

    P. Bréchignac, G. A. Garcia, C. Falvo, C. Joblin, D. Kokkin, A. Bonnamy, P. Parneix, T. Pino, O. Pirali, G. Mulas, L. Nahon, J. Chem. Phys. 141 (2014) 164325.CrossrefPubMedGoogle Scholar

  • 36.

    T. Baer, R. P. Tuckett, Phys. Chem. Chem. Phys. 19 (2017) 9698.PubMedCrossrefGoogle Scholar

  • 37.

    A. Bodi, P. Hemberger, D. L. Osborn, B. Sztáray, J. Phys. Chem. Lett. 4 (2013) 2948.CrossrefGoogle Scholar

  • 38.

    P. Oßwald, P. Hemberger, T. Bierkandt, E. Akyildiz, M. Köhler, A. Bodi, T. Gerber, T. Kasper, Rev. Sci. Instrum. 85 (2014) 025101.CrossrefPubMedGoogle Scholar

  • 39.

    X. Mercier, S. Batut, A. Faccinetto, G. Vanhove, A. El Bakali, P. Desgroux, D. Bozanic, G. Garcia, L. Nahon, Proc. 8th Eur. Combust. Meet. (2017) 529.Google Scholar

  • 40.

    J. Krüger, G. A. Garcia, D. Felsmann, K. Moshammer, A. Lackner, A. Brockhinke, L. Nahon, K. Kohse-Höinghaus, Phys. Chem. Chem. Phys. 16 (2014) 22791.PubMedCrossrefGoogle Scholar

  • 41.

    D. Felsmann, A. Lucassen, J. Krüger, C. Hemken, L.-S. Tran, J. Pieper, G. A. Garcia, A. Brockhinke, L. Nahon, K. Kohse-Höinghaus, Z. Phys. Chem. 230 (2016) 1067.Google Scholar

  • 42.

    X. C. Lu, D. Han, Z. Huang, Prog. Energy Combust. Sci. 37 (2011) 741.CrossrefGoogle Scholar

  • 43.

    J.-B. Masurier, F. Foucher, G. Dayma, P. Dagaut, Proc. Combust. Inst. 35 (2015) 3125.CrossrefGoogle Scholar

  • 44.

    M. Jia, M. Xie, Fuel 85 (2006) 2593.CrossrefGoogle Scholar

  • 45.

    C. K. Westbrook, W. J. Pitz, H. J. Curran, J. Phys. Chem. A 110 (2006) 6912.PubMedCrossrefGoogle Scholar

  • 46.

    B.-Q. He, S.-J. Shuai, J.-X. Wang, H. He, Atmos. Environ. 37 (2003) 4965.CrossrefGoogle Scholar

  • 47.

    G. Fontaras, G. Karavalakis, M. Kousoulidou, L. Ntziachristos, E. Bakeas, S. Stournas, Z. Samaras, Environ. Pollut. 158 (2010) 2496.CrossrefPubMedGoogle Scholar

  • 48.

    K. Zhang, K. Moshammer, P. Oßwald, K. Kohse-Höinghaus, Proc. Combust. Inst. 34 (2013) 763.CrossrefGoogle Scholar

  • 49.

    F. Herrmann, P. Oßwald, K. Kohse-Höinghaus, Proc. Combust. Inst. 34 (2013) 771.CrossrefGoogle Scholar

  • 50.

    J. Bugler, B. Marks, O. Mathieu, R. Archuleta, A. Camou, C. Grégoire, K. A. Heufer, E. L. Petersen, H. J. Curran, Combust. Flame 163 (2016) 138.CrossrefGoogle Scholar

  • 51.

    L.-S. Tran, J. Pieper, H.-H. Carstensen, H. Zhao, I. Graf, Y. Ju, F. Qi, K. Kohse-Höinghaus, Proc. Combust. Inst. 36 (2017) 1165.CrossrefGoogle Scholar

  • 52.

    K. Yasunaga, F. Gillespie, J. M. Simmie, H. J. Curran, Y. Kuraguchi, H. Hoshikawa, M. Yamane, Y. Hidaka, J. Phys. Chem. A 114 (2010) 9098.PubMedCrossrefGoogle Scholar

  • 53.

    J. Hashimoto, K. Tanoue, N. Taide, Y. Nouno, Proc. Combust. Inst. 35 (2015) 973.CrossrefGoogle Scholar

  • 54.

    X. Tang, G. A. Garcia, J.-F. Gil, L. Nahon, Rev. Sci. Instrum. 86 (2015) 123108.CrossrefPubMedGoogle Scholar

  • 55.

    G. A. Garcia, L. Nahon, I. Powis, Rev. Sci. Instrum. 75 (2004) 4989.CrossrefGoogle Scholar

  • 56.

    G. A. Garcia, H. Soldi-Lose, L. Nahon, Rev. Sci. Instrum. 80 (2009) 023102.CrossrefPubMedGoogle Scholar

  • 57.

    L. Nahon, N. de Oliveira, G. A. Garcia, J.-F. Gil, B. Pilette, O. Marcouillé, B. Lagarde, F. Polack, J. Synchrotron Rad. 19 (2012) 508.CrossrefGoogle Scholar

  • 58.

    R. J. Bartlett, M. Musiał, Rev. Mod. Phys. 79 (2007) 291.CrossrefGoogle Scholar

  • 59.

    G. Knizia, T. B. Adler, H.-J. Werner, J. Chem. Phys. 130 (2009) 054104.CrossrefPubMedGoogle Scholar

  • 60.

    T. E. Sharp, H. M. Rosenstock, J. Chem. Phys. 41 (1964) 3453.CrossrefGoogle Scholar

  • 61.

    H.-J. Werner, P. J. Knowles, G. Knizia, M. Manby, M. Schütz, MOLPRO Version 2009 (2009).Google Scholar

  • 62.

    LOGE Lund Combustion Engineering, LOGEsoft v1.08 (2016).Google Scholar

  • 63.

    U. Struckmeier, P. Oßwald, T. Kasper, L. Böhling, M. Heusing, M. Köhler, A. Brockhinke, K. Kohse-Höinghaus, Z. Phys. Chem. 223 (2009) 503.CrossrefGoogle Scholar

  • 64.

    L.-S. Tran, J. Pieper, M. Zeng, Y. Li, X. Zhang, W. Li, I. Graf, F. Qi, K. Kohse-Höinghaus, Combust. Flame 175 (2017) 47.CrossrefGoogle Scholar

  • 65.

    X. Yang, D. Felsmann, N. Kurimoto, J. Krüger, T. Wada, T. Tan, E. A. Carter, K. Kohse-Höinghaus, Y. Ju, Proc. Combust. Inst. 35 (2015) 491.CrossrefGoogle Scholar

  • 66.

    P.-O. Löwdin, Rev. Mod. Phys. 35 (1963) 496.CrossrefGoogle Scholar

  • 67.

    J. Paldus, A. Veillard, Mol. Phys. 35 (1978) 445.CrossrefGoogle Scholar

  • 68.

    E. R. Davidson, W. T. Borden, J. Phys. Chem. 87 (1983) 4783.CrossrefGoogle Scholar

  • 69.

    W. Eisfeld, K. Morokuma, J. Chem. Phys. 113 (2000) 5587.CrossrefGoogle Scholar

  • 70.

    T. Shiozaki, G. Knizia, H.-J. Werner, J. Chem. Phys. 134 (2011) 034113.PubMedCrossrefGoogle Scholar

  • 71.

    T. Shiozaki, H.-J. Werner, J. Chem. Phys. 134 (2011) 184104.CrossrefPubMedGoogle Scholar

  • 72.

    F. P. Lossing, J. C. Traeger, J. Am. Chem. Soc. 97 (1975) 1579.CrossrefGoogle Scholar

  • 73.

    N. Hansen, S. J. Klippenstein, J. A. Miller, J. Wang, T. A. Cool, M. E. Law, P. R. Westmoreland, T. Kasper, K. Kohse-Höinghaus, J. Phys. Chem. A 110 (2006) 4376.PubMedCrossrefGoogle Scholar

  • 74.

    F. P. Lossing, J. C. Traeger, Int. J. Mass Spectrom. Ion Phys. 19 (1976) 9.CrossrefGoogle Scholar

  • 75.

    S. Pignataro, A. Cassuto, F. P. Lossing, J. Am. Chem. Soc. 89 (1967) 3693.CrossrefGoogle Scholar

  • 76.

    G. Bieri, F. Burger, E. Heilbronner, J. P. Maier, Helv. Chim. Acta 60 (1977) 2213.CrossrefGoogle Scholar

  • 77.

    J. C. Traeger, J. Phys. Chem. 90 (1986) 4114.CrossrefGoogle Scholar

  • 78.

    P. Masclet, G. Mouvier, J. F. Bocquet, J. Chim. Phys. 78 (1981) 99.CrossrefGoogle Scholar

  • 79.

    M. Newville, T. Stensitzki, D. B. Allen, A. Ingargiola, LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python, http://dx.doi.org/10.5281/zenodo.11813 (2014).

  • 80.

    B. Yang, J. Wang, T. A. Cool, N. Hansen, S. Skeen, D. L. Osborn, Int. J. Mass Spectrom. 309 (2012) 118.CrossrefGoogle Scholar

  • 81.

    T. A. Cool, J. Wang, K. Nakajima, C. A. Taatjes, A. Mcllroy, Int. J. Mass Spectrom. 247 (2005) 18.CrossrefGoogle Scholar

  • 82.

    J. Wang, B. Yang, T. A. Cool, N. Hansen, T. Kasper, Int. J. Mass Spectrom. 269 (2008) 210.CrossrefGoogle Scholar

  • 83.

    F. Paulot, J. D. Crounse, H. G. Kjaergaard, J. H. Kroll, J. H. Seinfeld, P. O. Wennberg, Atmos. Chem. Phys. 9 (2009) 1479.CrossrefGoogle Scholar

  • 84.

    G. Martins, A. M. Ferreira-Rodrigues, F. N. Rodrigues, G. G. B. de Souza, N. J. Mason, S. Eden, D. Duflot, J.-P. Flament, S. V. Hoffmann, J. Delwiche, M.-J. Hubin-Franskin, P. Limão-Vieira, Phys. Chem. Chem. Phys. 11 (2009) 11219.CrossrefPubMedGoogle Scholar

  • 85.

    T. Adam, R. Zimmermann, Anal. Bioanal. Chem. 389 (2007) 1941.CrossrefPubMedGoogle Scholar

  • 86.

    A. Lucassen, K. Zhang, J. Warkentin, K. Moshammer, P. Glarborg, P. Marshall, K. Kohse-Höinghaus, Combust. Flame 159 (2012) 2254.CrossrefGoogle Scholar

  • 87.

    A. Lucassen, P. Oßwald, U. Struckmeier, K. Kohse-Höinghaus, T. Kasper, N. Hansen, T. A. Cool, P. R. Westmoreland, Proc. Combust. Inst. 32 (2009) 1269.CrossrefGoogle Scholar

  • 88.

    J.-P. Morizur, J. Mercier, M. Sarraf, Org. Mass Spectrom. 17 (1982) 327.CrossrefGoogle Scholar

  • 89.

    J. L. Holmes, F. P. Lossing, Can. J. Chem. 60 (1982) 2365.CrossrefGoogle Scholar

  • 90.

    J. M. Behan, F. M. Dean, R. A. W. Johnstone, Tetrahedron 32 (1976) 167.CrossrefGoogle Scholar

  • 91.

    J. L. Holmes, F. P. Lossing, P. C. Burgers, Int. J. Mass Spectrom. Ion Phys. 47 (1983) 133.CrossrefGoogle Scholar

  • 92.

    J. C. Traeger, D. J. McAdoo, Int. J. Mass Spectrom. Ion Process. 68 (1986) 35.CrossrefGoogle Scholar

  • 93.

    J. C. Traeger, Org. Mass Spectrom. 20 (1985) 223.CrossrefGoogle Scholar

  • 94.

    M. J. S. Dewar, S. D. Worley, J. Chem. Phys. 50 (1969) 654.CrossrefGoogle Scholar

About the article

Corresponding authors: Julia Pieper and Katharina Kohse-Höinghaus, Physical Chemistry I, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany, Phone: +49 521 106 6308 (J. Pieper); +49 521 106 2052 (K. Kohse-Höinghaus), Fax: +49 521 106 15 6887


Received: 2017-07-11

Accepted: 2017-08-31

Published Online: 2017-10-23

Published in Print: 2018-02-23


Citation Information: Zeitschrift für Physikalische Chemie, Volume 232, Issue 2, Pages 153–187, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2017-1009.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Dominik Krüger, Patrick Oßwald, Markus Köhler, Patrick Hemberger, Thomas Bierkandt, Yasin Karakaya, and Tina Kasper
Combustion and Flame, 2018, Volume 191, Page 343

Comments (0)

Please log in or register to comment.
Log in