Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus


IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 1.021

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.327
Source Normalized Impact per Paper (SNIP) 2018: 0.391

Online
ISSN
2196-7156
See all formats and pricing
More options …
Volume 232, Issue 5-6

Issues

Characterization of Trinuclear Oxo Bridged Cobalt Complexes in Isolation

Johannes Lang
  • Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniela V. Fries
  • Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gereon Niedner-Schatteburg
  • Corresponding author
  • Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-02-14 | DOI: https://doi.org/10.1515/zpch-2017-1046

Abstract

This study elucidates molecular structures, fragmentation pathways and relative stabilities of isolated trinuclear oxo bridged cobalt complexes of the structural type [Co3O(OAc)6(Py)n]+ (OAc=acetate, Py=pyridine, n=0, 1, 2, 3). We present infrared multiple photon dissociation (IR-MPD) spectra in combination with quantum chemical calculations. They indicate that the coordination of axial pyridine ligands to the [Co3O(OAc)6]+ subunit disturbs the triangular geometry of the Co3O core. [Co3O(OAc)6]+ exhibits a nearly equilateral triangular Co3O core geometry. The coordination of one or two pyridine ligands disturbs this arrangement resulting in isosceles triangular Co3O core geometries (in the cases of n=1 and 2). Coordination of three pyridine ligands (n=3) results in an equilateral triangular Co3O core geometry as in the case of n=0. Collision induced dissociation (CID) studies reveal that the complexes undergo a consecutive elimination of pyridine and acetate ligands with increasing excitation energy. Relative stabilities of the complexes decrease with the number of coordinated pyridine ligands. The presented results help to gain a fundamental insight into the molecular structure of trinuclear oxo bridged cobalt complexes void of any external effects such as crystal packing or solvation.

This article offers supplementary material which is provided at the end of the article.

Keywords: DFT modeling; spectroscopy

Footnotes

  • Dedicated to: Eckart Rühl on the occasion of his 60th birthday.

References

  • 1.

    G. B. Kauffman, Encyclopedia of Inorganic Chemistry, John Wiley & Sons, Ltd., Chichester (2006).Google Scholar

  • 2.

    K. R. Dunbar, R. A. Heintz, Progress Inorganic Chemistry, John Wiley & Sons, Inc., Chichester (2007), PP. 283.Google Scholar

  • 3.

    J. E. Huheey, E. A. Keiter, R. L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, Pearson Education, London (2000).Google Scholar

  • 4.

    R. C. Mehrotra, R. Bohra, Metal Carboxylates, Academic Press, New York (1983).Google Scholar

  • 5.

    G. Arom, S. M. J. Aubin, M. A. Bolcar, G. Christou, H. J. Eppley, K. Folting, D. N. Hendrickson, J. C. Huffman, R. C. Squire, H.-L. Tsai, S. Wang, M. W. Wemple, Polyhedron 17 (1998) 3005.CrossrefGoogle Scholar

  • 6.

    C. Bilgrien, S. Davis, R. S. Drago, J. Am. Chem. Soc. 109 (1987) 3786.CrossrefGoogle Scholar

  • 7.

    S. Ito, K. Inoue, M. Mastumoto, J. Am. Chem. Soc. 104 (1982) 6450.CrossrefGoogle Scholar

  • 8.

    D. H. R. Barton, M. J. Gastiger, W. B. Motherwell, J. Chem. Soc. Chem. Commun. (1983) 731. DOI: 10.1039/C39830000731.Google Scholar

  • 9.

    C. E. Sumner, G. R. Steinmetz, J. Am. Chem. Soc. 107 (1985) 6124.CrossrefGoogle Scholar

  • 10.

    B. N. Figgis, G. B. Robertson, Nature 205 (1965) 694.CrossrefGoogle Scholar

  • 11.

    A. Figuerola, V. Tangoulis, J. Ribas, H. Hartl, I. Brüdgam, M. Maestro, C. Diaz, Inorg. Chem. 46 (2007) 11017.PubMedCrossrefGoogle Scholar

  • 12.

    R. D. Cannon, U. A. Jayasooriya, F. E. Sowrey, C. Tilford, A. Little, J. P. Bourke, R. D. Rogers, J. B. Vincent, G. J. Kearley, Inorg. Chem. 37 (1998), 5675.PubMedCrossrefGoogle Scholar

  • 13.

    F. E. Sowrey, C. Tilford, S. Wocadlo, C. E. Anson, A. K. Powell, S. M. Bennington, W. Montfrooij, U. A. Jayasooriya, R. D. Cannon, J. Chem. Soc. Dalton Trans. 0 (2001) 862.Google Scholar

  • 14.

    S. E. Woehler, R. J. Wittebort, S. M. Oh, D. N. Hendrickson, D. Inniss, C. E. Strouse, J. Am. Chem. Soc. 108 (1986) 2938.CrossrefGoogle Scholar

  • 15.

    J. Overgaard, E. Rentschler, G. A. Timco, N. V. Gerbeleu, V. Arion, A. Bousseksou, J. P. Tuchagues, F. K. Larsen, J. Chem. Soc. Dalton Trans. (2002) 2981. DOI: 10.1039/B202851D.Google Scholar

  • 16.

    H. G. Jang, R. J. Wittebort, M. Sorai, Y. Kaneko, M. Nakano, D. N. Hendrickson, Inorg. Chem. 31 (1992) 2265.CrossrefGoogle Scholar

  • 17.

    S. M. Oh, D. N. Hendrickson, K. L. Hassett, R. E. Davis, J. Am. Chem. Soc. 106 (1984) 7984.CrossrefGoogle Scholar

  • 18.

    R. Wu, M. Poyraz, F. E. Sowrey, C. E. Anson, S. Wocadlo, A. K. Powell, U. A. Jayasooriya, R. D. Cannon, T. Nakamoto, M. Katada, H. Sano, Inorg. Chem. 37 (1998) 1913.CrossrefGoogle Scholar

  • 19.

    J. B. Fenn, Angew. Chem. Int. Ed. 42 (2003) 3871.CrossrefGoogle Scholar

  • 20.

    M. Yamashita, J. B. Fenn, J. Phys. Chem. 88 (1984) 4451.CrossrefGoogle Scholar

  • 21.

    M. Yamashita, J. B. Fenn, J. Phys. Chem. 88 (1984) 4671.CrossrefGoogle Scholar

  • 22.

    V. Katta, S. K. Chowdhury, B. T. Chait, J. Am. Chem. Soc. 112 (1990) 5348.CrossrefGoogle Scholar

  • 23.

    V. B. Di Marco, G. G. Bombi, Mass Spectrom. Rev. 25 (2006) 347.CrossrefPubMedGoogle Scholar

  • 24.

    K. L. Vikse, M. P. Woods, J. S. McIndoe, Organometallics 29 (2010) 6615.CrossrefGoogle Scholar

  • 25.

    J. S. McIndoe, Angew. Chem. Int. Ed. 49 (2010) 3717.Google Scholar

  • 26.

    W. Paul, Rev. Mod. Phys. 62 (1990) 531.CrossrefGoogle Scholar

  • 27.

    R. E. March, Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd., Chichester (2006).Google Scholar

  • 28.

    J. S. Sampson, K. K. Murray, D. C. Muddiman, J. Am. Soc. Mass. Spectrom. 20 (2009) 667.CrossrefPubMedGoogle Scholar

  • 29.

    W. N. Delgass, R. G. Cooks, Science 235 (1987) 545.CrossrefPubMedGoogle Scholar

  • 30.

    J. Oomens, B. G. Sartakov, G. Meijer, G. von Helden, Int. J. Mass Spectrom. 254 (2006) 1.CrossrefGoogle Scholar

  • 31.

    J. Seo, W. Hoffmann, S. Warnke, X. Huang, S. Gewinner, W. Schöllkopf, M. T. Bowers, G. von Helden, K. Pagel, Nat. Chem. 9 (2017) 39.PubMedGoogle Scholar

  • 32.

    J. Mohrbach, J. Lang, S. Dillinger, M. Prosenc, P. Braunstein, G. Niedner-Schatteburg, J. Mol. Spectrosc. 332 (2017) 103.CrossrefGoogle Scholar

  • 33.

    F. S. Menges, S. M. Craig, N. Tötsch, A. Bloomfield, S. Ghosh, H.-J. Krüger, M. A. Johnson, Angew. Chem. Int. Ed. 55 (2015) 1282.Google Scholar

  • 34.

    N. C. Polfer, Chem. Soc. Rev. 40 (2011) 2211.PubMedCrossrefGoogle Scholar

  • 35.

    F. Neese, Coord. Chem. Rev. 253 (2009) 526.CrossrefGoogle Scholar

  • 36.

    I. Ciofini, C. A. Daul, Coord. Chem. Rev. 238 (2003) 187.Google Scholar

  • 37.

    S. A. McLuckey, D. E. Goeringer, J. Mass Spectrom. 32 (1997) 461.CrossrefGoogle Scholar

  • 38.

    K. Biemann, H. Scoble, Science 237 (1987) 992.CrossrefPubMedGoogle Scholar

  • 39.

    K. R. Jennings, Int. J. Mass spectrom. 200 (2000) 479.CrossrefGoogle Scholar

  • 40.

    K. Biemann, S. A. Martin, Mass Spectrom. Rev. 6 (1987) 1.CrossrefGoogle Scholar

  • 41.

    R. Aebersold, D. R. Goodlett, Chem. Rev. 101 (2001) 269.PubMedCrossrefGoogle Scholar

  • 42.

    D. Schröder, S. Shaik, H. Schwarz, Acc. Chem. Res. 33 (2000) 139.PubMedCrossrefGoogle Scholar

  • 43.

    C. Kerner, J. Lang, M. Gaffga, F. S. Menges, Y. Sun, G. Niedner-Schatteburg, W. R. Thiel, ChemPlusChem. 82 (2017) 212.CrossrefGoogle Scholar

  • 44.

    D. R. Carl, B. K. Chatterjee, P. B. Armentrout, J. Chem. Phys. 132 (2010) 044303.CrossrefPubMedGoogle Scholar

  • 45.

    F. Falvo, L. Fiebig, F. Dreiocker, R. Wang, P. B. Armentrout, M. Schäfer, Int. J. Mass Spectrom. 330–332 (2012) 124.Google Scholar

  • 46.

    J. Laskin, R. P. W. Kong, T. Song, I. K. Chu, Int. J. Mass Spectrom. 330–332 (2012) 295.Google Scholar

  • 47.

    J. Lang, M. Cayir, S. P. Walg, P. DiMartino-Fumo, W. R. Thiel, G. Niedner-Schatteburg, Chem.-Eur. J. 22 (2016) 2345.CrossrefGoogle Scholar

  • 48.

    J. Lang, J. Mohrbach, S. Dillinger, J. M. Hewer, G. Niedner-Schatteburg, Chem. Commun. 53 (2017) 420.CrossrefGoogle Scholar

  • 49.

    R. D. Cannon, U. A. Jayasooriya, R. Wu, S. K. arapKoske, J. A. Stride, O. F. Nielsen, R. P. White, G. J. Kearley, D. Summerfield, J. Am. Chem. Soc. 116 (1994) 11869.CrossrefGoogle Scholar

  • 50.

    D. N. Hendrickson, In: Research Frontiers in Magnetochemistry (ed. C. J. O’Connor), World Scientific Co. Pte. Ltd., Singapore (1993), P. 87.Google Scholar

  • 51.

    M. L. Baker, G. A. Timco, S. Piligkos, J. S. Mathieson, H. Mutka, F. Tuna, P. Kozłowski, M. Antkowiak, T. Guidi, T. Gupta, H. Rath, R. J. Woolfson, G. Kamieniarz, R. G. Pritchard, H. Weihe, L. Cronin, G. Rajaraman, D. Collison, E. J. L. McInnes, R. E. P. Winpenny, Proc. Natl. Acad. Sci. USA 109 (2012) 19113.CrossrefGoogle Scholar

  • 52.

    F. H. Hodel, S. Luber, ACS Catal. 6 (2016) 1505.CrossrefGoogle Scholar

  • 53.

    F. Evangelisti, R. Moré, F. Hodel, S. Luber, G. R. Patzke, J. Am. Chem. Soc. 137 (2015) 11076.CrossrefPubMedGoogle Scholar

  • 54.

    A. M. Ullman, Y. Liu, M. Huynh, D. K. Bediako, H. Wang, B. L. Anderson, D. C. Powers, J. J. Breen, H. D. Abruña, D. G. Nocera, J. Am. Chem. Soc. 136 (2014) 17681.PubMedCrossrefGoogle Scholar

  • 55.

    J. G. McAlpin, T. A. Stich, C. A. Ohlin, Y. Surendranath, D. G. Nocera, W. H. Casey and R. D. Britt, J. Am. Chem. Soc. 133 (2011) 15444.PubMedCrossrefGoogle Scholar

  • 56.

    M. D. Symes, Y. Surendranath, D. A. Lutterman, D. G. Nocera, J. Am. Chem. Soc. 133 (2011) 5174.CrossrefPubMedGoogle Scholar

  • 57.

    C. E. Sumner, G. R. Steinmetz, Inorg. Chem. 28 (1989) 4290.CrossrefGoogle Scholar

  • 58.

    J. Laskin, J. H. Futrell, Mass Spectrom. Rev. 24 (2005) 135.CrossrefPubMedGoogle Scholar

  • 59.

    E.-L. Zins, C. Pepe, D. Schröder, J. Mass Spectrom. 45 (2010) 1253.CrossrefPubMedGoogle Scholar

  • 60.

    E.-L. Zins, C. Pepe, D. Rondeau, S. Rochut, N. Galland, J.-C. Tabet, J. Mass Spectrom. 44 (2009) 12.CrossrefPubMedGoogle Scholar

  • 61.

    K. V. Barylyuk, K. Chingin, R. M. Balabin, R. Zenobi, J. Am. Soc. Mass. Spectrom. 21 (2009) 172.PubMedGoogle Scholar

  • 62.

    F. Menges, C. Riehn, G. Niedner-Schatteburg, Z. Phys. Chem. 225 (2011) 595.CrossrefGoogle Scholar

  • 63.

    B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157 (1989) 200.CrossrefGoogle Scholar

  • 64.

    A. D. Becke, J. Chem. Phys. 98 (1993) 5648.CrossrefGoogle Scholar

  • 65.

    T. H. Dunning, J. Chem. Phys. 90 (1989) 1007.CrossrefGoogle Scholar

  • 66.

    M. Dolg, H. Stoll, H. Preuss, R. M. Pitzer, J. Phys. Chem. 97 (1993) 5852.CrossrefGoogle Scholar

  • 67.

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT (2009).Google Scholar

About the article

Received: 2017-10-12

Accepted: 2018-01-21

Published Online: 2018-02-14

Published in Print: 2018-05-24


Citation Information: Zeitschrift für Physikalische Chemie, Volume 232, Issue 5-6, Pages 649–669, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2017-1046.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in