Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus


IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 1.021

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.327
Source Normalized Impact per Paper (SNIP) 2018: 0.391

Online
ISSN
2196-7156
See all formats and pricing
More options …
Volume 232, Issue 7-8

Issues

A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples

Martin Brodrecht
  • Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edda Klotz / Christina Lederle / Hergen Breitzke
  • Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bernd Stühn / Michael Vogel / Gerd Buntkowsky
  • Corresponding author
  • Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-08 | DOI: https://doi.org/10.1515/zpch-2017-1030

Abstract

The processes of drying mesoporous silica materials and their refilling with water have been examined by magic-angle spinning (MAS) solid-state NMR, broadband dielectric spectroscopy (BDS), and differential scanning calorimetry (DSC). It is shown that different drying protocols strongly influence the amount and types of hydroxy-species inside the pores. It is found that a very good vacuum (≈10−6 bar) is necessary to remove all H2O molecules from the silica matrices in order to accurately refill them with very low amounts of water such as e.g. a mono- or submonolayer coverage of the surface. Time-dependent 1H-NMR-spectra recorded after loading the samples indicate a very specific course of water first existing in a bulk-like form inside the pores and then distributing itself through the pores by hydrogen bonding to surface silanol groups. After assuring accurate sample loading, we were able to investigate lowly hydrated samples of water confined in MCM-41 via DCS and BDS at temperatures below the freezing point of free bulk-water (0°C) and find two non-crystallizing water species with Arrhenius behavior and activation energies of 0.53 eV (51.1 kJ/mol).

Keywords: broadband dielectric spectroscopy; confinement; solid-state NMR; water; wetting

References

  • 1.

    P. H. Poole, F. Sciortino, U. Essmann, H. E. Stanley, Nature 360 (1992) 324.CrossrefGoogle Scholar

  • 2.

    O. Mishima, H. E. Stanley, Nature 396 (1998) 329.CrossrefGoogle Scholar

  • 3.

    S. Cerveny, F. Mallamace, J. Swenson, M. Vogel, L. Xu, Chem. Rev. 116 (2016) 7608.CrossrefPubMedGoogle Scholar

  • 4.

    E. Gedat, A. Schreiber, J. Albrecht, T. Emmler, I. Shenderovich, G. H. Findenegg, H. H. Limbach, G. Buntkowsky, J. Phys. Chem. B 106 (2002) 1977.CrossrefGoogle Scholar

  • 5.

    W. Masierak, T. Emmler, E. Gedat, A. Schreiber, G. H. Findenegg, G. Buntkowsky, J. Phys. Chem. B 108 (2004) 18890.CrossrefGoogle Scholar

  • 6.

    C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, J. Phys. Condens. Mat. 18 (2006) 15.Google Scholar

  • 7.

    M. Febles, N. Perez-Hernandez, C. Perez, M. L. Rodriguez, C. Foces-Foces, M. V. Roux, E. Q. Morales, G. Buntkowsky, H. H. Limbach, J. D. Martin, J. Am. Chem. Soc. 128 (2006) 10008.CrossrefPubMedGoogle Scholar

  • 8.

    R. Bergman, J. Swenson, Nature 403 (2000) 283.CrossrefPubMedGoogle Scholar

  • 9.

    H. Jansson, J. Swenson, Eur. Phys. J. E 12 (2003) 51.Google Scholar

  • 10.

    A. Faraone, L. Liu, C.-Y. Mou, C.-W. Yen, S.-H. Chen, J. Chem. Phys. 121 (2004) 10843.PubMedCrossrefGoogle Scholar

  • 11.

    A. Spanoudaki, B. Albela, L. Bonneviot, M. Peyrard, Eur. Phys. J. E 17 (2005) 21.CrossrefGoogle Scholar

  • 12.

    J. Hedström, J. Swenson, R. Bergman, H. Jansson, S. Kittaka, Eur. Phys. J. Spec. Top. 141 (2007) 53.CrossrefGoogle Scholar

  • 13.

    J. Sjöström, J. Swenson, R. Bergman, S. Kittaka, J. Chem. Phys. 128 (2008) 154503.PubMedCrossrefGoogle Scholar

  • 14.

    F. Mallamace, C. Corsaro, P. Baglioni, E. Fratini, S.-H. Chen, J. Phys.: Condens. Matter 24 (2012) 064103.PubMedGoogle Scholar

  • 15.

    J. Swenson, S. Cerveny, J. Phys.: Condens. Matter 27 (2014) 033102.PubMedGoogle Scholar

  • 16.

    A. Vyalikh, T. Emmler, E. Gedat, I. Shenderovich, G. H. Findenegg, H. H. Limbach, G. Buntkowsky, Solid State Nucl. Mag. 28 (2005) 117.CrossrefGoogle Scholar

  • 17.

    F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, U. Wanderlingh, L. Liu, C.-Y. Mou, S. H. Chen, J. Chem. Phys. 124 (2006) 161102.PubMedCrossrefGoogle Scholar

  • 18.

    G. Buntkowsky, H. Breitzke, A. Adamczyk, F. Roelofs, T. Emmler, E. Gedat, B. Grünberg, Y. Xu, H.-H. Limbach, I. Shenderovich, Phys. Chem. Chem. Phys. 9 (2007) 4843.PubMedCrossrefGoogle Scholar

  • 19.

    A. Vyalikh, T. Emmler, B. Grünberg, Y. Xu, I. Shenderovich, G. H. Findenegg, H. H. Limbach, G. Buntkowsky, Z. Phys. Chem. 221 (2007) 155.CrossrefGoogle Scholar

  • 20.

    A. Vyalikh, T. Emmler, I. Shenderovich, Y. Zeng, G. H. Findenegg, G. Buntkowsky, Phys. Chem. Chem. Phys. 9 (2007) 2249.CrossrefPubMedGoogle Scholar

  • 21.

    M. Sattig, M. Vogel, J. Phys. Chem. Lett. 5 (2014) 174.PubMedCrossrefGoogle Scholar

  • 22.

    M. F. Harrach, B. Drossel, W. Winschel, T. Gutmann, G. Buntkowsky, J. Phys. Chem. C 119 (2015) 28961.CrossrefGoogle Scholar

  • 23.

    M. Rosenstihl, K. Kämpf, F. Klameth, M. Sattig, M. Vogel, J. Non-Cryst. Solids 407 (2015) 449.CrossrefGoogle Scholar

  • 24.

    S. Jähnert, F. V. Chávez, G. Schaumann, A. Schreiber, M. Schönhoff, G. Findenegg, Phys. Chem. Chem. Phys. 10 (2008) 6039.CrossrefPubMedGoogle Scholar

  • 25.

    B. Grünberg, T. Emmler, E. Gedat, I. Shenderovich, G. H. Findenegg, H.-H. Limbach, G. Buntkowsky, Chem. Eur. J. 10 (2004) 5689.CrossrefGoogle Scholar

  • 26.

    R. Richert, Annu. Rev. Phys. Chem. 62 (2011) 65.PubMedCrossrefGoogle Scholar

  • 27.

    B. Grünberg, A. Grünberg, H.-H. Limbach, G. Buntkowsky, App. Magn. Res. 44 (2013) 189.CrossrefGoogle Scholar

  • 28.

    M. Grün, K. K. Unger, A. Matsumoto, K. Tsutsumi, Microporous Mesoporous Mater. 27 (1999) 207.CrossrefGoogle Scholar

  • 29.

    D. G. Cory, W. M. Ritchey, J. Magn. Res. 80 (1988) 128.Google Scholar

  • 30.

    H. Wagner, R. Richert, J. Phys. Chem. B 103 (1999) 4071.CrossrefGoogle Scholar

  • 31.

    S. Kittaka, S. Ishimaru, M. Kuranishi, T. Matsuda, T. Yamaguchi, Phys. Chem. Chem. Phys. 8 (2006) 3223.CrossrefPubMedGoogle Scholar

  • 32.

    S. Cerveny, G. A. Schwartz, R. Bergman, J. Swenson, Phys. Rev. Lett. 93 (2004) 245702.PubMedCrossrefGoogle Scholar

  • 33.

    J. Swenson, H. Jansson, R. Bergman, Phys. Rev. Lett. 96 (2006) 247802.CrossrefPubMedGoogle Scholar

About the article

aMartin Brodrecht and Edda Klotz: These authors contributed equally to this work.


Received: 2017-09-08

Accepted: 2017-11-09

Published Online: 2017-12-08

Published in Print: 2018-07-26


Citation Information: Zeitschrift für Physikalische Chemie, Volume 232, Issue 7-8, Pages 1003–1015, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2017-1030.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
C. Lederle, M. Sattig, and M. Vogel
The Journal of Physical Chemistry C, 2018

Comments (0)

Please log in or register to comment.
Log in