Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus


IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 1.021

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.327
Source Normalized Impact per Paper (SNIP) 2018: 0.391

Online
ISSN
2196-7156
See all formats and pricing
More options …
Volume 233, Issue 10

Issues

Hydrothermal Synthesis of Zinc Doped Nickel Ferrites: Evaluation of Structural, Magnetic and Dielectric Properties

Farzana Majid / Javeria Rauf / Sadia Ata / Ismat Bibi / Muhammad Yameen / Munawar Iqbal
Published Online: 2019-01-11 | DOI: https://doi.org/10.1515/zpch-2018-1305

Abstract

Nickel–zinc ferrites are soft magnetic materials that have different technological applications due to their low magnetic coercivity, high electrical resistivity and low eddy current loss. The soft ferrites are the best for manufacturing core of power transformers, recording heads, data storage devices, telecommunication equipment, media devices, microwaves and electronic devices. In current investigation, a series of zinc doped nickel ferrites (ZnxNi1−xFe2O4, x = 0.1, 0.2, 0.3, 0.4 and 0.5) were prepared by hydrothermal method (at 220 °C, 16 h). The structural, magnetic and dielectric properties were measured. X-ray diffractometer and fourier transform infrared spectroscopy (FTIR) were used to analyze the structural properties and structure of zinc doped nickel ferrites was spinel. As the concentration of Zn was increased, the structural properties (lattice constant, density, dislocation density, radii of tetra and octahedral sites and oxygen positional parameters) were also changed. FTIR results showed the strongest absorption band at 500–600 cm−1, which indicate the intrinsic stretching vibration of Zn+2 ↔ O bond (Mtetra ↔ O) at tetrahedral site. Vibrating sample magnetometer (VSM) was used to measure magnetic properties and it was observed that the value of saturation magnetization increased with Zn concentration. The investigation of frequency dependent dielectric property was measured by Impedance Analyzer. Dielectric constant and tangent loss decreased at higher frequency, whereas AC conductivity increased with frequency.

Keywords: dielectric properties; FTIR; hydrothermal method; magnetic properties; nickel–zinc ferrites; structural properties

References

  • 1.

    M. Höltig, C. Ruhmlieb, C. Strelow, T. Kipp, A. Mews, Z. Phys. Chem. 229 (2015) 301.Google Scholar

  • 2.

    M. Kumar, H. Chauhan, B. Satpati, S. Deka, Z. Phys. Chem. 233 (2018) 85.CrossrefGoogle Scholar

  • 3.

    M. Saeed, A. Mansha, M. Hamayun, A. Ahmad, A. Ulhaq, M. Ashfaq, Z. Phys. Chem. 232 (2018) 359.CrossrefGoogle Scholar

  • 4.

    M. Saeed, M. Siddique, M. Usman, A. ul Haq, S. G. Khan, H. A. Raoof, Z. Phys. Chem. 231 (2017) 1559.Google Scholar

  • 5.

    N. Xiang, J. Huang, H. Zhao, C. Liu, X. Liu, Z. Phys. Chem. 230 (2016) 1711.Google Scholar

  • 6.

    P. Zhang, H. Li, Y. Liu, S. Yao, W. Wang, Z. Phys. Chem. 225 (2011) 843.CrossrefGoogle Scholar

  • 7.

    A. Abebe, A. Sendek, S. Ayalew, M. Kibret, Chem. Int. 3 (2017) 230.Google Scholar

  • 8.

    M. Arshad, A. Qayyum, G. Abbas, R. Haider, M. Iqbal, A. Nazir, J. Mol. Liq. 260 (2018) 272.CrossrefGoogle Scholar

  • 9.

    M. Arshad, A. Qayyum, G. A. Shar, G. A. Soomro, A. Nazir, B. Munir, M. Iqbal, J. Photochem. Photobiol. B 185 (2018) 176.PubMedCrossrefGoogle Scholar

  • 10.

    A. Ashar, M. Iqbal, I. A. Bhatti, M. Z. Ahmad, K. Qureshi, J. Nisar, I. H. Bukhari, J. Alloy. Comp. 678 (2016) 126.CrossrefGoogle Scholar

  • 11.

    Shahab-ud-Din, M. Z. Ahmad, K. Qureshi, I. A. Bhatti, M. Zahid, J. Nisar, M. Iqbal, M. Abbas, Mater. Res. Bull. 100 (2018) 120.CrossrefGoogle Scholar

  • 12.

    O. U. Igwe, F. Nwamezie, Chem. Int. 4 (2018) 60.Google Scholar

  • 13.

    D. Guerard, N.-E. Elalem, L. Elansari, J.-F. Mareche, E. Mcrae, H. Estrade-szwarckopf, B. Rousseau, P. Lauginie, J. Conard, Z. Phys. Chem. 164 (1989) 1579.CrossrefGoogle Scholar

  • 14.

    A. Goriachko, H. Over, Z. Phys. Chem. 223 (2009) 157.CrossrefGoogle Scholar

  • 15.

    L. Wu, J. Lan, S. Wang, J. Zhu, Z. Phys. Chem. 231 (2017) 1525.Google Scholar

  • 16.

    E. Ezzatzadeh, Z. Naturforsch. B 73 (2018) 179.CrossrefGoogle Scholar

  • 17.

    M. Ahmed, N. Okasha, S. El-Dek, Chem. Int. 36 (2010) 1529.Google Scholar

  • 18.

    S. El-Dek, Philosoph. Mag. Lett. 90 (2010) 233.CrossrefGoogle Scholar

  • 19.

    D. Zhao, X. Wu, H. Guan, E. Han, J. Supercrit. Fluid. 42 (2007) 226.CrossrefGoogle Scholar

  • 20.

    J. Duque, E. Souza, C. Meneses, L. Kubota, Phys. B 398 (2007) 287.CrossrefGoogle Scholar

  • 21.

    I. H. Gul, W. Ahmed, A. Maqsood, J. Magnet. Magnet. Mater. 320 (2008) 270.CrossrefGoogle Scholar

  • 22.

    Y. Kinemuchi, K. Ishizaka, H. Suematsu, W. Jiang, K. Yatsui, Thin Solid Film 407 (2002) 109.CrossrefGoogle Scholar

  • 23.

    J. Zhou, J. Ma, C. Sun, L. Xie, Z. Zhao, H. Tian, Y. Wang, J. Tao, X. Zhu, J. Am. Ceram. Soc. 88 (2005) 3535.CrossrefGoogle Scholar

  • 24.

    P. E. Meskin, V. K. Ivanov, A. E. Barantchikov, B. R. Churagulov, Y. D. Tretyakov, Ultrason. Sonochem. 13 (2006) 47.PubMedCrossrefGoogle Scholar

  • 25.

    M. Li, X. Liu, T. Xu, Y. Nie, H. Li, C. Zhang, J. Magnet. Magnet. Mater. 439 (2017) 228.CrossrefGoogle Scholar

  • 26.

    S. Liu, L. Wang, K. Chou, J. Magnet. Magnet. Mater. 449 (2018) 49.CrossrefGoogle Scholar

  • 27.

    W. Shen, L. Zhang, B. Zhao, Y. Du, X. Zhou, Ceram. Int. 44 (2018) 9809.CrossrefGoogle Scholar

  • 28.

    A. Xia, C. Zuo, L. Chen, C. Jin, Y. Lv, J. Magnet. Magnet. Mater. 332 (2013) 186.CrossrefGoogle Scholar

  • 29.

    M. Y. Rafique, M. Ellahi, M. Z. Iqbal, L. Pan, Mater. Lett. 162 (2016) 269.CrossrefGoogle Scholar

  • 30.

    R. Sharma, S. Singhal, Phys. B 414 (2013) 83.CrossrefGoogle Scholar

  • 31.

    M. Atif, M. Nadeem, J. Sol-Gel Sci. Technol. 72 (2014) 615.CrossrefGoogle Scholar

  • 32.

    D. Sibera, R. Jȩdrzejewski, J. Mizeracki, A. Presz, U. Narkiewicz, W. Łojkowski, Acta Phys. Polonica A 116 (2009) S-133.CrossrefGoogle Scholar

  • 33.

    A. Mostafa, G. El-Shobaky, E. Girgis, J. Phys. D 39 (2006) 2007.CrossrefGoogle Scholar

  • 34.

    H. Kavas, A. Baykal, M. S. Toprak, Y. Köseoğlu, M. Sertkol, B. Aktaş, J. Alloy. Comp. 479 (2009) 49.CrossrefGoogle Scholar

  • 35.

    B. D. Cullity, S. R. Stock, Elements of X-ray Diffraction, 3rd ed. Prentice Hall Publication, India (2001).Google Scholar

  • 36.

    M. Srivastava, S. Chaubey, A. K. Ojha, Mater. Chem. Phys. 118 (2009) 174.CrossrefGoogle Scholar

  • 37.

    T. Anjaneyulu, A. Raghavender, K. V. Kumar, P. N. Murthy, K. Narendra, J. Korean Phys. Soc. 62 (2013) 1114.CrossrefGoogle Scholar

  • 38.

    H. Ghayour, M. Abdellahi, N. Ozada, S. Jabbrzare, A. Khandan, J. Phys. Chem. Solid. 111 (2017) 464.CrossrefGoogle Scholar

  • 39.

    Y. Köseoğlu, Ceram. Int. 39 (2013) 4221.CrossrefGoogle Scholar

  • 40.

    C. Ehi-Eromosele, B. Ita, E. E. Iweala, S. Adalikwu, P. A. L. Anawe, Bull. Mater. Sci. 38 (2015) 1465.CrossrefGoogle Scholar

  • 41.

    R. Kumar, R. R. Singh, P. Barman, Int. J. Sci. Eng. Res. 5 (2014) 12.Google Scholar

  • 42.

    S. Chakrabarty, M. Pal, A. Dutta, Mater. Chem. Phys. 153 (2015) 221.CrossrefGoogle Scholar

  • 43.

    S. Hugh, C. ONeill, A. Navrotsky, Am. Mineral. 68 (1983) 181.Google Scholar

  • 44.

    K. Nejati, R. Zabihi, Chem. Central J. 6 (2012) 23.CrossrefGoogle Scholar

  • 45.

    M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, A. Bozkurt, M. S. Toprak, J. Alloy. Comp. 486 (2009) 325.CrossrefGoogle Scholar

  • 46.

    M. Rahimi, P. Kameli, M. Ranjbar, H. Hajihashemi, H. Salamati, J. Mater. Sci. 48 (2013) 2969.CrossrefGoogle Scholar

  • 47.

    R. Melo, P. Banerjee, A. Franco, J. Mater. Sci. Mater. Electron. 29 (2018) 14657.CrossrefGoogle Scholar

  • 48.

    T. Theivasanthi, M. Alagar, Phys. Tech. Sci. 1 (2013) 39.CrossrefGoogle Scholar

  • 49.

    S. Zawar, S. Atiq, S. Riaz, S. Naseem, Superlattices Microstruct. 93 (2016) 50.CrossrefGoogle Scholar

  • 50.

    F. O. Abulude, D. N. Ogunmola, M. M. Alabi, Y. Abdulrasheed, Chem. Int. 4 (2018) 136.Google Scholar

  • 51.

    A. Babarinde, K. Ogundipe, K. T. Sangosanya, B. D. Akintola, A.-O. Elizabeth Hassan, Chem. Int. 2 (2016) 89.Google Scholar

  • 52.

    A. Babarinde, G. O. Onyiaocha, Chem. Int. 2 (2016) 37.Google Scholar

  • 53.

    N. K. Benabdallah, D. Harrache, A. Mir, M. de la Guardia, F.-Z. Benhachem, Chem. Int. 3 (2017) 220.Google Scholar

  • 54.

    M. Sasmaz, B. Akgül, D. Yıldırım, A. Sasmaz, Int. J. Phytoremed. 18 (2016) 69.CrossrefGoogle Scholar

  • 55.

    M. Sasmaz, A. Sasmaz, J. Geochem. Explorat. 181 (2017) 236.CrossrefGoogle Scholar

  • 56.

    D. Yildirim, A. Sasmaz, J. Geochem. Explorat. 182 (2017) 228.CrossrefGoogle Scholar

  • 57.

    M. Abbas, M. Adil, S. Ehtisham-ul-Haque, B. Munir, M. Yameen, A. Ghaffar, G. A. Shar, M. A. Tahir, M. Iqbal, Sci. Total Environ. 626 (2018) 1295.CrossrefPubMedGoogle Scholar

  • 58.

    S. Mansouri, N. Elhammoudi, S. Aboul-hrouz, M. Mouiya, L. Makouki, A. Chham, A. Abourriche, H. Hannache, M. Oumam, Chem. Int. 4 (2018) 7.Google Scholar

  • 59.

    K. K. Mehta, R. S. Chandra, D. R. Mehta, M. M. Maisuria, Chem. Int. 4 (2018) 33.Google Scholar

  • 60.

    M. Bourjila, A. El Gridani, R. Tijar, B. El Merbouh, R. D. El Bouzaidi, Chem. Int. 5 (2019) 132.Google Scholar

  • 61.

    M. Iqbal, M. Abbas, J. Nisar, A. Nazir, Chem. Int. 5 (2019) 1.Google Scholar

  • 62.

    R. Thakur, P. K. Tarafder, R. R. Jha, Chem. Int. 5 (2019) 109.Google Scholar

  • 63.

    A. Kausar, M. Iqbal, A. Javed, K. Aftab, Z.-i.-H. Nazli, H. N. Bhatti, S. Nouren, J. Mol. Liq. 256 (2018) 395.CrossrefGoogle Scholar

  • 64.

    A. Kausara, G. MacKinnon, A. Alharthi, J. Hargreaves, H. N. Bhatti, M. Iqbal, J. Mol. Liq. 257 (2018) 164.CrossrefGoogle Scholar

  • 65.

    Z. Sadiq, M. Iqbal, E. A. Hussain, S. Naz, J. Mol. Liq. 255 (2018) 26.CrossrefGoogle Scholar

  • 66.

    A. Chham, E. Khouya, M. Oumam, A. K. Abourriche, S. Gmouh, M. larzek, S. Mansouri, N. Elhammoudi, N. Hanafi, H. Hannache, Chem. Int. 4 (2018) 67.Google Scholar

  • 67.

    O. Chidi, R. Kelvin, Chem. Int. 4 (2018) 221.Google Scholar

  • 68.

    T. N. Chikwe, R. E. Ekpo, I. Okoye, Chem. Int. 4 (2018) 230.Google Scholar

  • 69.

    F. Deeba, N. Abbas, M. T. Butt, R. A. Khan, M. Muneeb, Chem. Int. 4 (2018) 206.Google Scholar

  • 70.

    A. A. Bhatti, K. Arif, F. Yasin, I. Ahmad, Curr. Sci. Perspect. 3 (2017) 156.Google Scholar

  • 71.

    H. S. Prajapati, S. Vyas, M. Pandey, Curr. Sci. Perspect. 3 (2017) 124.Google Scholar

  • 72.

    A. Khalafallah, M. Ahmed, Curr. Sci. Perspect. 4 (2018) 13.Google Scholar

  • 73.

    C. P. Ukpaka, Curr. Sci. Perspect. 4 (2018) 36.Google Scholar

  • 74.

    C. P. Ukpaka, Curr. Sci. Perspect. 4 (2018) 24.Google Scholar

  • 75.

    M. Iqbal, Chemosphere 144 (2016) 785.CrossrefPubMedGoogle Scholar

About the article

Received: 2018-09-19

Accepted: 2018-12-01

Published Online: 2019-01-11

Published in Print: 2019-10-25


Citation Information: Zeitschrift für Physikalische Chemie, Volume 233, Issue 10, Pages 1411–1430, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2018-1305.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
M Iqbal, M Fatima, T Javed, A Anam, A Nazir, Q Kanwal, Z Shehzadi, M I Khan, J Nisar, M Abbas, and S Naz
Materials Research Express, 2020, Volume 7, Number 1, Page 015070
[2]
Asma Irshad, Nadeem Sarwar, Haleema Sadia, Kausar Malik, Irum Javed, Abdullah Irshad, Muhammad Afzal, Mazhar Abbas, and Hina Rizvi
International Journal of Biological Macromolecules, 2019

Comments (0)

Please log in or register to comment.
Log in