Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus


IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 1.021

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.327
Source Normalized Impact per Paper (SNIP) 2018: 0.391

Online
ISSN
2196-7156
See all formats and pricing
More options …
Volume 233, Issue 8

Issues

Chemically Synthesized Hierarchical Flower like ZnO Microstructures

V. L. Patil
  • Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S. A. Vanalakar
  • Corresponding author
  • Science Wing, Karmaveer Hire Arts, Science, Commerce and Education College, Gargoti, Dist: Kolhapur 416209, India, Tel.: +91-231-2300121
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S. A. Vhanalakar
  • Department of Zoology, Karmaveer Hire Arts, Science, Commerce and Education College, Gargoti, Kolhapur 416209, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. S. Kamble / T. D. Dongale / D. N. Kurhe / P. P. Kamble / S. P. Patil
  • Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S. S. Shendage
  • Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. S. Patil
  • Corresponding author
  • Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, India, Tel.: +91-231-2609490
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. H. Kim
  • Corresponding author
  • Department of Zoology, Karmaveer Hire Arts, Science, Commerce and Education College, Gargoti, Dist: Kolhapur 416209, India, Tel.: +81-62-530-1709
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-11-28 | DOI: https://doi.org/10.1515/zpch-2017-1016

Abstract

In the present study, we have deposited hierarchical flower-like microstructured zinc oxide (ZnO) thin films directly on a glass substrate by using the simplistic aqueous chemical route for different concentrations of triethanolamine (TEA) which acted like a complexing agent. The as-synthesized ZnO thin films were subsequently annealed at 300 °C and are characterized with characterization techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), photoluminescence (PL), and electrical resistivity. The hexagonal wurtzite crystal structure of as-synthesized ZnO thin films was confirmed by their XRD patterns and the well-resolved ZnO flowers-like morphology was revealed from the FESEM micrographs. From FESEM images it can be seen that the ZnO flower is composed of dozens of nanorods originating from the same core in a symmetric fashion with an average diameter of around 180-300 nm. The flower-like morphology was obtained at 0.3 M TEA concentration. Due to its hierarchical structure, the deposited ZnO thin films were employed for multiple applications such as gas sensing and anti-microbial activity. The ZnO thin films with micro-flowers like morphology showed the maximum gas sensor sensitivity ∼64.50 at 150 °C for 100 ppm of NO2 gas. Moreover, the bacteria were completely destroyed in the presence of as-deposited ZnO thin films.

Keywords: anti-microbial activity; gas sensitivity; microstructure; nanorods; zinc oxide

References

  • 1.

    S. A. Vanalakar, S. A. Vhanalakar, V. L. Patil, N. S. Harale, B. B. Kale, J. H. Kim, P. S. Patil, IEEE Physics and Technology of Sensors, (2015) 245–248, DOI: .CrossrefGoogle Scholar

  • 2.

    OSHA and MSHA, Diesel Exposure Limit, 2006 http://www.dieselnet.com/standards/us/ohs.php.

  • 3.

    P. Rai, S. Raj, K. J. Ko, K. K. Park, Y. T. Yu, Sens. Actuator B-Chem. 178 (2013) 107.Google Scholar

  • 4.

    R. K. Sonker, S. R. Sabhajeet, S. Singh, B. C. Yadav, Mater. Lett. 152 (2015) 189.Google Scholar

  • 5.

    C. Peng, J. Guo, W. Yang, C. Shi, M. Liu, Y. Zheng, J. Xu, P. Chen, T. Huang, Y. Yang, J. Alloys Compd. 654 (2016) 371.Google Scholar

  • 6.

    N. L. Tarwal, P. R. Jadhav, S. A. Vanalakar, S. S. Kalagi, R. C. Pawar, J. S. Shaikh, S. S. Mali, D. S. Dalavi, P. S. Shinde, P. S. Patil, Powder Technol. 208 (2011) 185.Google Scholar

  • 7.

    S. A. Vanalakar, S. S. Mali, R. C. Pawar, D. S. Dalavi, A. V. Mohalkar, H. P. Deshamukh, P. S. Patil, Ceram. Int. 38 (2012) 6461.Google Scholar

  • 8.

    M. Saeed, M. Siddique, M. Usman, A. U. Haq, S. G. Khan, H. A. Raoof, Z. Phys. Chem. 231 (2017) 1559.Google Scholar

  • 9.

    K. Ramesh, A. Rajappa, V. Nandhakumar, Z. Phys. Chem. 231 (2017) 1057.Google Scholar

  • 10.

    H. K. Farag, A. M. El-Shamy, E. M. Sherif, S. Zein, E. Abedin, Z. Phys. Chem. 230 (2016) 1733.Google Scholar

  • 11.

    H. Usui, Mater. Lett. 63 (2009) 1489.Google Scholar

  • 12.

    S. A. Vanalakar, R. C. Pawar, M. P. Suryawanshi, S. S. Mali, D. S. Dalavi, A. V. Moholkar, K. U. Sim, Y. B. Kown, J. H. Kim, P. S. Patil, Mater. Lett. 65 (2011) 548.Google Scholar

  • 13.

    A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, D. Mohamad, Nano-micro Lett. 7 (2015) 219.Google Scholar

  • 14.

    R. S. Kumar, P. Sudhagar, R. Sathyamoorthy, P. Matheswaran, Y. S. Kang, R. S. Kumar, Superlattice Microst. 46 (2009) 917.Google Scholar

  • 15.

    P. Rai, J. N. Jo, I. H. Lee, Y. T. Yu, Mater. Chem. Phys. 124 (2010) 406.Google Scholar

  • 16.

    S. A. Vanalakar, S. S. Mali, M. P. Suryawanshi, N. L. Tarwal, P. R. Jadhav, G. L. Agawane, K. V. Gurav, A. S. Kamble, S. W. Shin, A. V. Moholkar, J. Y. Kim, J. H. Kim, P. S. Patil, Opt. Mater. 37 (2014) 766.Google Scholar

  • 17.

    B. Liu, J. Xu, S. Ran, Z. Wang, D. Chen, G. Shen, CrystEngComm. 14 (2012) 4582.Google Scholar

  • 18.

    J. A. Alvarado, A. Maldonado, H. Juarez, M. Pacio, R. Perez, Beilstein J. Nanotechnology 6 (2015) 971.Google Scholar

  • 19.

    M. R. Alenezi, S. J. Henley, N. G. Emerson, S. Ravi, P. Silva, Nanoscale 6 (2014) 235.Google Scholar

  • 20.

    A. S. Kamble, R. C. Pawar, N. L. Tarwal, L. D. More, P. S. Patil, Mater. Lett. 65 (2011) 1488.Google Scholar

  • 21.

    N. L. Tarwal, P. S. Patil, Appl. Surf. Sci. 256 (2010) 7451.Google Scholar

  • 22.

    S. A. Vanalakar, S. S. Mali, R. C. Pawar, N. L. Tarwal, A. V. Moholkar, J. H. Kim, P. S. Patil, J. Appl. Phys. 112 (2012) 044302.Google Scholar

  • 23.

    G. Korotcenkov, Mater. Sci. Eng., B, 139 (2007) 1.Google Scholar

  • 24.

    S. A. Vanalakar, V. L. Patil, N. S. Harale, S. A. Vhanalakar, M. G. Gang, J. Y. Kim, P. S. Patil, J. H. Kim, Sens. Actuator B-Chem. 221 (2015) 1195.Google Scholar

  • 25.

    U. Godavarti, V. D. Mote, M. Dasari, J. Asian. Ceram. Soc. 5 (2017) 391.Google Scholar

  • 26.

    S. B. Jagadale, V. L. Patil, S. A. Vanalakar, P. S. Patil, H. P. Deshmukh, Ceram. Int. 44 (2018) 3333.Google Scholar

  • 27.

    S. S. Shendage, V. L. Patil, S. P. Patil, S. A. Vanalakar, J. L. Bhosale, J. H. Kim, P. S. Patil, J. Anal. Appl. Pyrol. 125 (2017) 9.Google Scholar

  • 28.

    C. Peng, J. Guo, W. Yang, C. Shi, M. Liu, Y. Zheng, J. Xu, P. Chen, T. Huang, Y. Yang, J. Alloys Compd. 654 (2016) 371.Google Scholar

  • 29.

    V. L. Patil, S. A. Vanalakar, P. S. Patil, J. H. Kim, Sens. Actuator B-Chem. 239 (2017) 1185.Google Scholar

  • 30.

    M. A. Chougule, S. Sen, V. B. Patil, Ceram. Int. 38 (2012) 2685.Google Scholar

  • 31.

    F. T. Liu, S. F. Gao, S. K. Pei, S. C. Tseng, C. Hsin, J. Liu, ZnO nanorod gas sensor for NO2 detection, J. Taiwan Inst. Chem. E. 40 (2009) 528.Google Scholar

  • 32.

    S. Öztürk, N. Kılınç, N. Taşaltin, Z. Z. Öztürk, Thin Solid Films 520 (2011) 932.Google Scholar

  • 33.

    W. Zeng, T. M. Liu, Physica B 405 (2010) 1345.Google Scholar

  • 34.

    N. Yamazoe, G. Sakai, K. Shimanoe, Catal. Surv. Asia 7 (2003) 63.Google Scholar

  • 35.

    T. Xie, N. Sullivan, K. Steffens, B. Wen, G. Liu, R. Debnath, A. Davydov, R. Gomez, A. Motayed, J. Alloys Compd. 653 (2015) 255.Google Scholar

  • 36.

    S. Boyadjiev, V. Georgieva, L. Vergov, Z. Baji, F. Gáber, I. M. Szilágyi, J. Phys. Conf. Series 559 (2014) 012013.Google Scholar

  • 37.

    Y. Yamada, Y. Seno, Y. Masuoka, T. Nakamura, K. Yamashita, Sens. Actuator B-Chem. 66 (2000) 164.Google Scholar

  • 38.

    Y. Liu, L. He, A. Mustapha, H. Li, Z. Q. Hu, M. Lin, J. Appl. Microbiol. 107 (2009) 1193.Google Scholar

  • 39.

    Y. Xie, Y. He, P. L. Irwin, T. Jin, X. Shi, Appl. Environ. Microbiol. 77 (2011) 2325.Google Scholar

  • 40.

    K. Bethke, S. Palantöken, V. Andrei, M. Roß, V. S. Raghuwanshi, F. Kettemann, K. Greis, T. T. K. Ingber, J. B. Stückrath, S. Valiyaveettil, K. Rademann, Adv. Funct. Mater. 28 (2018) 1800409.Google Scholar

About the article

Received: 2017-08-01

Accepted: 2018-11-06

Published Online: 2018-11-28

Published in Print: 2019-08-27


Citation Information: Zeitschrift für Physikalische Chemie, Volume 233, Issue 8, Pages 1183–1200, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2017-1016.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
I.A. Nagornov, A.S. Mokrushin, E.P. Simonenko, N.P. Simonenko, Ph.Yu. Gorobtsov, V.G. Sevastyanov, and N.T. Kuznetsov
Ceramics International, 2019
[2]
Muhammad Saeed, Muhammad Ibrahim, Majid Muneer, Nadia Akram, Muhammad Usman, Iqra Maqbool, Muhammad Adeel, and Asif Nisar
Zeitschrift für Physikalische Chemie, 2019, Volume 0, Number 0

Comments (0)

Please log in or register to comment.
Log in