Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Ed. by Rademann, Klaus

12 Issues per year


IMPACT FACTOR 2016: 1.012

CiteScore 2016: 0.99

SCImago Journal Rank (SJR) 2016: 0.463
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
2196-7156
See all formats and pricing
More options …
Volume 231, Issue 4 (Apr 2017)

Issues

Coordination of the Mn4+-Center in Layered Li[Co0.98Mn0.02]O2 Cathode Materials for Lithium-Ion Batteries

Peter Jakes
  • Forschungszentrum Jülich, Institut für Energie- und Klimaforschung (IEK-9), D-52425 Jülich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Leonard Kröll
  • Forschungszentrum Jülich, Institut für Energie- und Klimaforschung (IEK-9), D-52425 Jülich, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrew Ozarowski
  • National High Magnetic Field Laboratory, Center for Interdisciplinary Magnetic Resonance, Florida State University, Tallahassee, FL 32310, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Johan van Tol
  • National High Magnetic Field Laboratory, Center for Interdisciplinary Magnetic Resonance, Florida State University, Tallahassee, FL 32310, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daria Mikhailova
  • Karlsruher Institut für Technologie (KIT), Institut für Angewandte Materialien (IAM), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Helmut Ehrenberg
  • Karlsruher Institut für Technologie (KIT), Institut für Angewandte Materialien (IAM), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
  • Technische Universtät Darmstadt, Department of Geo and Materials Science, Alarich-Weiss-Str. 2, D-64287 Darmstadt, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rüdiger-A. Eichel
  • Corresponding author
  • Forschungszentrum Jülich, Institut für Energie- und Klimaforschung (IEK-9), D-52425 Jülich, Germany
  • RWTH Aachen University, Institut für Physikalische Chemie, D-52074 Aachen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-03 | DOI: https://doi.org/10.1515/zpch-2016-0909

Abstract

The local coordination of the manganese in Li[Co0.98Mn0.02]O2 cathode materials for lithium-ion batteries has been investigated by means of a joint XRD and multi-frequency electron paramagnetic resonance (EPR) characterization approach. EPR showed the manganese being in a tetravalent high-spin Mn4+-oxidation state with S=32. The set of spin-Hamiltonian parameters obtained from the multi-frequency EPR analysis with Larmor frequencies ranging between 9.4 and 406 GHz is transformed into structural information by means of the recently introduced Monte-Carlo Newman-superposition modeling. Based on this analysis, the Mn4+ are shown being incorporated for the Co3+-sites, i.e. acting as donor-type functional centers MnCo. In that respect, for Mn4+ the negative sign of the axial second-order fine-structure interaction parameter B20 is indicative of an elongated oxygen octahedron in its first coordination sphere, whereas B20>0 rather points to a compressed octahedron coordinated about the Mn4+-centers. Furthermore, the results obtained here suggest that the oxygen octahedron about the Mn4+-ion is slightly distorted as compared to the CoO6 octahedron. Concerning the coordination to next-nearest neighbor ions, part of the manganese resides in manganese-rich domains, whereas the for the remaining centers the Co3+-site is randomly occupied with Co/Mn according to the effective stoichiometry of the compound. Finally, a structural stability range emerges from the Newman-modeling that supports the discussed ability of manganese to act as an structure-stabilizing element in layered oxides.

Keywords: cathode materials; defect chemistry; lithium-ion batteries; multi-frequency EPR; Newman-superposition model

Dedicated to: Kev Salikhov on the occasion of his 80th birthday.

References

  • 1.

    K. Mizushima, P. C. Jones, P. C. Wiseman, J. B. Goodenough, Mater. Res. Bull. 15 (1980) 783.Google Scholar

  • 2.

    M. Winter, J. Besenhard, M. Spahr, P. Novak, Adv. Mater. 10 (1998) 725.Google Scholar

  • 3.

    M. S. Whittingham, Chem. Rev. 104 (2004) 4271.Google Scholar

  • 4.

    J. N. Reimers, E. W. Fuller, E. Rossen, J. R. Dahn, J. Electrochem. Soc. 140 (1993) 3396.Google Scholar

  • 5.

    A. R. Armstrong, P. G. Bruce, Nature 381 (1996) 499.Google Scholar

  • 6.

    Y. J. Wei, H. Ehrenberg, N. N. Bramnik, K. Nikolowski, C. Baehtz, H. Fuess, Solid State Ionics 178 (2007) 253.Google Scholar

  • 7.

    N. Hayashi, H. Ikuta, M. Wakihara, J. Electrochem. Soc. 146 (1999) 1351.Google Scholar

  • 8.

    M. R. Palacyn, Y. Chabre, L. Dupont, M. Hervieu, P. Strobel, G. Rousse, C. Masquelier, M. Anne, G. G. Amatucci, J. M. Tarascon, J. Electrochem. Soc. 147 (2000) 845.Google Scholar

  • 9.

    S. Mandal, R. M. Rojas, J. M. Amarilla, P. Calle, N. V. Kosova, V. F. Anufrienko, J. M. Rojo, Chem. Mater. 14 (2002) 1598.Google Scholar

  • 10.

    F. G. B. Ooms, E. M. Kelder, J. Schoonman, M. Wagemaker, F. M. Mulder, Solid State Ionics 152−153 (2002) 143.Google Scholar

  • 11.

    N. Kiziltas-Yavuz, A. Bhaskar, D. Dixon, M. Yavuz, K. Nikolowski, L. Lu, R.-A. Eichel, H. Ehrenberg, J. Power Sources 267 (2014) 533.Google Scholar

  • 12.

    S. Waki, K. Dokko, T. Itoh, M. Nishizawa, T. Abe, I. Uchida, J. Solid State Electrochem. 4 (2000) 205.Google Scholar

  • 13.

    R. Stoyanova, E. Zhecheva, L. Zarkova, Solid State Ionics 73 (1994) 233.Google Scholar

  • 14.

    N. Iltchev, W. Bowden, P. R. Moses, Electrochem. Soc. Proc. 96−17 (1997) 235.Google Scholar

  • 15.

    K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari, Electrochim. Acta 48 (2002) 145.Google Scholar

  • 16.

    M. H. Lee, Y. J. Kang, S. T. Myung, Y. K. Sun, Electrochim. Acta 50 (2004) 939.Google Scholar

  • 17.

    M. M. Thackeray, C. S. Johnson, J. T. Vaughey, N. Li, S. A. Hackney, J. Mater. Sci. 15 (2005) 2257.Google Scholar

  • 18.

    T. H. Cho, S. M. Park, M. Yoshi, T. Hirai, Y. Hideshima, J. Power Sources 142 (2005) 306.Google Scholar

  • 19.

    L. Zhang, X. Wang, T. Muta, D. Li, H. Noguchi, M. Yoshio, R. Ma, K. Takada, T. Sasaki, J. Power Sources 162 (2006) 629.Google Scholar

  • 20.

    Y. Koyama, I. Tanaka, H. Adachi, Y. Makimura, T. Ohzuku, J. Power Sources 119−121 (2003) 644.Google Scholar

  • 21.

    N. Yabuuchi, Y. Koyama, N. Nakayama, T. Ohzuku, J. Electrochem. Soc. 152 (2005) A1434.Google Scholar

  • 22.

    P. S. Whitfield, I. J. Davidson, L. M. D. Cranswick, I. P. Swainson, P. W. Stephens, Solid State Ionics, 176 (2005) 463.Google Scholar

  • 23.

    L. S. Cahill, S. C. Yin, A. Samoson, I. Heinmaa, L. F. Nazar, G. R. Gward, Chem. Mater. 17 (2005) 6560.Google Scholar

  • 24.

    R.-A. Eichel, Phys. Chem. Chem. Phys. 13 (2011) 368.Google Scholar

  • 25.

    R. Stoyanova, A. L. Barra, M. Yoncheva, E. Zhecheva, E. Shinova, P. Tzvetkova, E. Simova, Inorg. Chem. 49 (2010) 1932.Google Scholar

  • 26.

    P. Jakes, E. Erdem, A. Ozarowski, J. van Tol, R. Buckan, D. Mikhailova, H. Ehrenberg, R.-A. Eichel, Phys. Chem. Chem. Phys. 13 (2011) 9344.Google Scholar

  • 27.

    P. Jakes, G. Cohn, Y. Ein-Eli, F. Scheiba, H. Ehrenberg, R.-A. Eichel, Chem. Sus. Chem. 5 (2012) 2278.Google Scholar

  • 28.

    A. Artemenko, M. Menetrier, M. Pollet, C. Delmas, J. Appl. Phys. 106 (2009) 064914.Google Scholar

  • 29.

    E. Erdem, V. Mass, A. Gembus, A. Schulz, V. Liebau-Kunzmann, C. Fasel, R. Riedel, R.-A. Eichel, Phys. Chem. Chem. Phys. 11 (2009) 5628.Google Scholar

  • 30.

    P. Jakes, J. Granwehr, H. Kungl, R.-A. Eichel, Z. Phys. Chem. 229 (2015) 1439.Google Scholar

  • 31.

    P. Jakes, J. Zimmermann, H. von Seggern, A. Ozarowski, J. van Tol, R.-A. Eichel, Funct. Mat. Lett. 7 (2014) 1350073.Google Scholar

  • 32.

    J. Wandt, C. Marino, H. A. Gasteiger, P. Jakes, R.-A. Eichel, J. Granwehr, Energy Environ. Sci. 8 (2015) 1358.Google Scholar

  • 33.

    J. Wandt, P. Jakes, J. Granwehr, H. A. Gasteiger, R.-A. Eichel, Angew. Chem. Int. Ed. 55 (2016) 6892.Google Scholar

  • 34.

    R.-A. Eichel, E. Erdem, P. Jakes, A. Ozarowski, J. van Tol, R. C. Hoffmann, J. J. Schneider, Funct. Mat. Lett. 6 (2013) 1330004.Google Scholar

  • 35.

    R.-A. Eichel, K. P. Dinse, H. Kungl, M. J. Hoffmann, A. Ozarowski, J. van Tol, L. C. Brunel, Appl. Phys. A 80 (2005) 51.Google Scholar

  • 36.

    E. Erdem, R.-A. Eichel, H. Kungl, M. J. Hoffmann, A. Ozarowski, J. van Tol, L. C. Brunel, Phys. Scr. T129 (2007) 12.Google Scholar

  • 37.

    M. D. Drahus, P. Jakes, E. Erdem, S. Schaab, J. Chen, M. Ozerov, S. Zvyagin, R.-A. Eichel, Phys. Rev. B 84 (2011) 064113.Google Scholar

  • 38.

    R.-A. Eichel, H. Kungl, M. J. Hoffmann, J. Appl. Phys. 95 (2004) 80926.Google Scholar

  • 39.

    R.-A. Eichel, P. Erhart, P. Traskelin, K. Albe, H. Kungl, M. J. Hoffmann, Phys. Rev. Lett. 100 (2008) 095504.Google Scholar

  • 40.

    P. Jakes, H. Kungl, R. Schierholz, J. Granwehr, R.-A. Eichel, Appl. Phys. Lett. 109 (2016) 122904.Google Scholar

  • 41.

    T. Roisnel, J. Rodriguez-Carvajal, Mater. Sci. Forum 378–381 (2001) 118.Google Scholar

  • 42.

    J. F. Berar, P. Lelann, J. Appl. Crystallogr. 24 (1991) 1.Google Scholar

  • 43.

    J. van Tol, L. C. Brunel and R. J. Wylde, Rev. Sci. Instrum. 76 (2005) 074101.Google Scholar

  • 44.

    A. Abragam, B. Bleaney: Electron paramagnetic resonance of transition ions, Clarendon Press, Oxford (1970).Google Scholar

  • 45.

    R.-A. Eichel, M. D. Drahus, P. Jakes, E. Erünal, E. Erdem, S. K. S. Parasharb, H. Kungl, M. J. Hoffmann, Mol. Phys. 107 (2009) 1981.Google Scholar

  • 46.

    P. Jakes, R.-A. Eichel, Mol. Phys. 110 (2012) 277.Google Scholar

  • 47.

    D. J. Newman, Adv. Phys. 20 (1971) 197.Google Scholar

  • 48.

    E. Siegel, K. A. Müller, Phys. Rev. B 19 (1979) 109.Google Scholar

  • 49.

    T. H. Yeom, J. Phys. Condens. Matter 13 (2001) 10471.Google Scholar

  • 50.

    J. N. Reimers, J. R. Dahn, J. Electrochem. Soc. 139 (1992) 2091.Google Scholar

  • 51.

    I. Uchida, H. Fujiyoshi, S. Waki, J. Power Sources 68 (1997) 139.Google Scholar

  • 52.

    E. Aksel, P. Jakes, E. Erdem, D. M. Smyth, A. Ozarowski, J. van Tol, J. L. Jones, R.-A. Eichel, J. Am. Ceram. Soc. 94 (2011) 1363.Google Scholar

  • 53.

    R.-A. Eichel, R. Böttcher, Mol. Phys. 105 (2007) 2195.Google Scholar

  • 54.

    L. X. Zhang, E. Erdem, X. Ren, R.-A. Eichel, Appl. Phys. Lett. 93 (2008) 202901.Google Scholar

  • 55.

    E. Erdem, M. D. Drahus, R.-A. Eichel, A. Ozarowski, J. van Tol, L. C. Brunel, Ferroelectrics 363 (2008) 39.Google Scholar

  • 56.

    S. Stoll, A. Schweiger, J. Magn. Reson. 178 (2006) 42.Google Scholar

  • 57.

    R.-A. Eichel, H. Mestric, H. Kungl, M. J. Hoffmann, Appl. Phys. Lett. 88 (2006) 122506.Google Scholar

  • 58.

    S. Laubach, P. C. Schmidt, D. Ensling, S. Schmid, W. Jaegermann, A. Thißen, K. Nikolowski, H. Ehrenberg, Phys. Chem. Chem. Phys. 11 (2009) 3278.Google Scholar

About the article

Received: 2016-10-08

Accepted: 2016-10-10

Published Online: 2016-11-03

Published in Print: 2017-04-01


Citation Information: Zeitschrift für Physikalische Chemie, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2016-0909.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in