Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus


IMPACT FACTOR 2017: 1.144
5-year IMPACT FACTOR: 1.144

CiteScore 2018: 1.20

SCImago Journal Rank (SJR) 2018: 0.327
Source Normalized Impact per Paper (SNIP) 2018: 0.391

Online
ISSN
2196-7156
See all formats and pricing
More options …
Volume 232, Issue 5-6

Issues

Influence of Organic Ligands on the Surface Oxidation State and Magnetic Properties of Iron Oxide Particles

Christian Goroncy
  • Institut für Chemie und Biochemie – Physikalische und Theoretische Chemie, Freie Universität Berlin, Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Patrick E. J. Saloga
  • Institut für Chemie und Biochemie – Physikalische und Theoretische Chemie, Freie Universität Berlin, Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mathias Gruner
  • Institut für Chemie und Biochemie – Physikalische und Theoretische Chemie, Freie Universität Berlin, Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Madlen Schmudde
  • Institut für Chemie und Biochemie – Physikalische und Theoretische Chemie, Freie Universität Berlin, Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jonathan Vonnemann
  • Institut für Chemie und Biochemie – Organische Chemie, Freie Universität Berlin, Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edwige Otero / Rainer Haag
  • Institut für Chemie und Biochemie – Organische Chemie, Freie Universität Berlin, Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christina Graf
  • Corresponding author
  • Institut für Chemie und Biochemie – Physikalische und Theoretische Chemie, Freie Universität Berlin, Berlin, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-04-13 | DOI: https://doi.org/10.1515/zpch-2017-1084

Abstract

For the application of iron oxide nanoparticles from thermal decomposition approaches as contrast agents in magnetic resonance imaging (MRI), their initial hydrophobic ligands have to be replaced by hydrophilic ones. This exchange can influence the surface oxidation state and the magnetic properties of the particles. Here, the effect of the anchor group of three organic ligands, citric acid and two catechols, dihydrocaffeic acid and its nitrated derivative nitro dihydrocaffeic acid on iron oxide nanoparticles is evaluated. The oleate ligands of Fe3O4/γ-Fe2O3 nanoparticles prepared by the thermal decomposition of iron oleate were exchanged against the hydrophilic ligands. X-ray absorption spectroscopy, especially X-ray magnetic circular dichroism (XMCD) measurements in the total electron yield (TEY) mode was used to investigate local magnetic and electronic properties of the particles’ surface region before and after the ligand exchange. XMCD was combined with charge transfer multiplet calculations which provide information on the contributions of Fe2+ and Fe3+ at different lattice sites, i.e. either in tetrahedral or octahedral environment. The obtained data demonstrate that nitro hydrocaffeic acid leads to least reduction of the magnetizability of the surface region of the iron oxide nanoparticles compared to the two other ligands. For all hydrophilic samples, the proportion of Fe3+ ions in octahedral sites increases at the expense of the Fe2+ in octahedral sites whereas the percentage of Fe3+ in tetrahedral sites hardly changes. These observations suggest that an oxidation process took place, but a selective decrease of the Fe2+ ions in octahedral sites ions due to surface dissolution processes is unlikely. The citrate ligand has the least oxidative effect, whereas the degree of oxidation was similar for both catechol ligands regardless of the nitro group. Twenty-four hours of incubation in isotonic saline has nearly no influences on the magnetic properties of the nanoparticles, the least on those with the nitrated hydrocaffeic acid ligand.

Keywords: iron oxide nanoparticles; surface oxidation; X-ray absorption spectroscopy; X-ray magnetic circular dichroism (XMCD)

Dedicated to: Eckart Rühl on the occasion of his 60th birthday.

References

  • 1.

    R. Hao, J. Yu, Z. Ge, L. Zhao, F. Sheng, L. Xu, G. Li, Y. Hou, Nanoscale 5 (2013) 11954.CrossrefPubMedGoogle Scholar

  • 2.

    J. Park, K. J. An, Y. S. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang, T. Hyeon, Nat. Mater. 3 (2004) 891.PubMedCrossrefGoogle Scholar

  • 3.

    A. Demortiere, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, S. Begin-Colin, Nanoscale 3 (2011) 225.PubMedCrossrefGoogle Scholar

  • 4.

    J. Park, E. Lee, N.-M. Hwang, M. Kang, S. C. Kim, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, T. Hyeon, Angew. Chem. Int. Ed. 44 (2005) 2872.CrossrefGoogle Scholar

  • 5.

    M. Darbandi, F. Stromberg, J. Landers, N. Reckers, B. Sanyal, W. Keune, H. Wende, J. Phys. D: Appl. Phys. 45 (2012) 195001.CrossrefGoogle Scholar

  • 6.

    F. Bourgeois, P. Gergaud, H. Renevier, C. Leclere, G. Feuillet, J. Appl. Phys. 113 (2013) 13510.CrossrefGoogle Scholar

  • 7.

    R. Zirbs, A. Lassenberger, I. Vonderhaid, S. Kurzhals, E. Reimhult, Nanoscale 7 (2015) 11216.PubMedCrossrefGoogle Scholar

  • 8.

    V. C. F. Mosqueira, P. Legrand, J. L. Morgat, M. Vert, E. Mysiakine, R. Gref, J. P. Devissaguet, G. Barratt, Pharm. Res. 18 (2001) 1411.PubMedCrossrefGoogle Scholar

  • 9.

    E. Amstad, S. Zurcher, A. Mashaghi, J. Y. Wong, M. Textor, E. Reimhult, Small 5 (2009) 1334.CrossrefPubMedGoogle Scholar

  • 10.

    T. J. Daou, J. M. Greneche, G. Pourroy, S. Buathong, A. Derory, C. Ulhaq-Bouillet, B. Donnio, D. Guillon, S. Begin-Colin, Chem. Mater. 20 (2008) 5869.CrossrefGoogle Scholar

  • 11.

    A. K. L. Yuen, G. A. Hutton, A. F. Masters, T. Maschmeyer, Dalton Trans. 41 (2012) 2545.PubMedCrossrefGoogle Scholar

  • 12.

    C. Graf, C. Goroncy, P. Stumpf, E. Weschke, C. Boeglin, H. Ronneburg, E. Rühl, J. Phys. Chem. C. 119 (2015) 19404.CrossrefGoogle Scholar

  • 13.

    J. Salafranca, J. Gazquez, N. Perez, A. Labarta, S. T. Pantelides, S. J. Pennycook, X. Batlle, M. Varela, Nano Lett. 12 (2012) 2499.PubMedCrossrefGoogle Scholar

  • 14.

    T. Gillich, C. Acikgoez, L. Isa, A. D. Schlueter, N. D. Spencer, M. Textor, ACS Nano. 7 (2013) 316.CrossrefPubMedGoogle Scholar

  • 15.

    K. H. Bae, Y. B. Kim, Y. Lee, J. Hwang, H. Park, T. G. Park, Bioconjug. Chem. 21 (2010) 505.CrossrefPubMedGoogle Scholar

  • 16.

    H. Basti, L. Ben Tahar, L. S. Smiri, F. Herbst, M. J. Vaulay, F. Chau, S. Ammar, S. Benderbous, J. Colloid Interf. Sci. 341 (2010) 248.CrossrefGoogle Scholar

  • 17.

    M. Chanana, S. Jahn, R. Georgieva, J. F. Lutz, H. Baumler, D. Y. Wang, Chem. Mater. 21 (2009) 1906.CrossrefGoogle Scholar

  • 18.

    L. S. Lin, Z. X. Cong, J. B. Cao, K. M. Ke, Q. L. Peng, J. H. Gao, H. H. Yang, G. Liu, X. Y. Chen, ACS Nano. 8 (2014) 3876.PubMedCrossrefGoogle Scholar

  • 19.

    S. Mondini, C. Drago, A. M. Ferretti, A. Puglisi, A. Ponti, Nanotechnology 24 (2013) 105702, 14 pages.Google Scholar

  • 20.

    R. C. Stone, B. Qi, D. Trebatoski, R. Jetti, Y. P. Bandera, S. H. Foulger, O. T. Mefford, J. Mater. Chem. B. 2 (2014) 4789.CrossrefGoogle Scholar

  • 21.

    J. Xie, C. J. Xu, Z. C. Xu, Y. L. Hou, K. L. Young, S. X. Wang, N. Pourmond, S. H. Sun, Chem. Mater. 18 (2006) 5401.PubMedCrossrefGoogle Scholar

  • 22.

    C. J. Xu, K. M. Xu, H. W. Gu, R. K. Zheng, H. Liu, X. X. Zhang, Z. H. Guo, B. Xu, J. Am. Chem. Soc. 126 (2004) 9938.PubMedCrossrefGoogle Scholar

  • 23.

    K. Wagner, T. Seemann, R. Wyrwa, J. H. Clement, R. Müller, S. Nietzsche, M. Schnabelrauch, AIP Conf. Proc. 1311 (2010) 28.Google Scholar

  • 24.

    H. B. Na, G. Palui, J. T. Rosenberg, X. Ji, S. C. Grant, H. Mattoussi, ACS Nano. 6 (2012) 389.PubMedCrossrefGoogle Scholar

  • 25.

    D. K. Nagesha, B. D. Plouffe, M. Phan, L. H. Lewis, S. Sridhar, S. K. Murthy, J. Appl. Phys. 105 (2009) 3.Google Scholar

  • 26.

    E. Amstad, T. Gillich, I. Bilecka, M. Textor, E. Reimhult, Nano Lett. 9 (2009) 4042.PubMedCrossrefGoogle Scholar

  • 27.

    E. Amstad, A. U. Gehring, H. Fischer, V. V. Nagaiyanallur, G. Haehner, M. Textor, E. Reimhult, J. Phys. Chem. C. 115 (2011) 683.CrossrefGoogle Scholar

  • 28.

    E. Amstad, M. Textor, E. Reimhult, Nanoscale 3 (2011) 2819.PubMedCrossrefGoogle Scholar

  • 29.

    M. D. Shultz, J. U. Reveles, S. N. Khanna, E. E. Carpenter, J. Am. Chem. Soc. 129 (2007) 2482.CrossrefPubMedGoogle Scholar

  • 30.

    E. Goering, M. Lafkioti, S. Gold, Phys. Rev. Lett. 96 (2006) 97.Google Scholar

  • 31.

    S. Gota, M. Gautier-Soyer, M. Sacchi, Phys. Rev. B. 62 (2000) 4187.CrossrefGoogle Scholar

  • 32.

    F. May, N. Martensson, M. Tischer, J. H. Dunn, D. Arvanitis, M. Russo, K. Baberschke, J. Phys.: Condens. Matter 7 (1995) 1111.Google Scholar

  • 33.

    R. Nakajima, J. Stohr, Y. U. Idzerda, Phys. Rev. B. 59 (1999) 6421.CrossrefGoogle Scholar

  • 34.

    P. S. Miedema, F. M. F. de Groot, J. Electron Spectrosc. Relat. Phenom. 187 (2013) 32.CrossrefGoogle Scholar

  • 35.

    J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Nat. Methods 9 (2012) 676.PubMedCrossrefGoogle Scholar

  • 36.

    P. Ohresser, E. Otero, F. Choueikani, K. Chen, S. Stanescu, F. Deschamps, T. Moreno, F. Polack, B. Lagarde, J. P. Daguerre, F. Marteau, F. Scheurer, L. Joly, J. P. Kappler, B. Muller, O. Bunau, P. Sainctavit, Rev. Sci. Instrum. 85 (2014) 013106, 8 pages.Google Scholar

  • 37.

    P. Ohresser, E. Otero, F. Choueikani, S. Stanescu, F. Deschamps, L. Ibis, T. Moreno, F. Polack, B. Lagarde, F. Marteau, F. Scheurer, L. Joly, J. P. Kappler, B. Muller, S. Ph, J. Phys.: Conf. Ser. 425 (2013) 212007.Google Scholar

  • 38.

    E. Stavitski, F. M. F. de Groot, Micron. 41 (2010) 687.CrossrefPubMedGoogle Scholar

  • 39.

    R. A. D. Pattrick, G. Van der Laan, C. M. B. Henderson, P. Kuiper, E. Dudzik, D. J. Vaughan, Eur. J. Mineral. 14 (2002) 1095.CrossrefGoogle Scholar

  • 40.

    F. Schedin, E. W. Hill, G. van der Laan, G. Thornton, J. Appl. Phys. 96 (2004) 1165.CrossrefGoogle Scholar

  • 41.

    H. G. Becker, R. Beckert, G. Domschke, Organikum: Organisch-chemisches Grundpraktikum. 21. ed. Wiley-VCH, Weinheim (2001).Google Scholar

  • 42.

    X. Yang, H. Hong, J. J. Grailer, I. J. Rowland, A. Javadi, S. A. Hurley, Y. Xiao, Y. Yang, Y. Zhang, R. Nickles, W. Cai, D. A. Steeber, S. Gong, Biomaterials 32 (2011) 4151.PubMedCrossrefGoogle Scholar

  • 43.

    E. Amstad, H. Fischer, A. U. Gehring, M. Textor, E. Reimhult, Chem. Eur. J. 17 (2011) 7396.CrossrefGoogle Scholar

  • 44.

    P. Y. Bruice, Organic Chemistry. 4th. ed. Pearson/Prentice Hall, Upper Saddle River (2004).

  • 45.

    L. M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B. D. Stein, B. Dragnea, Chem. Mater. 19 (2007) 3624.CrossrefGoogle Scholar

  • 46.

    L. M. Bronstein, J. E. Atkinson, A. G. Malyutin, F. Kidwai, B. D. Stein, D. G. Morgan, J. M. Perry, J. A. Karty, Langmuir 27 (2011) 3044.CrossrefPubMedGoogle Scholar

  • 47.

    D. Nordmeyer, P. Stumpf, D. Gröger, A. Hofmann, S. Enders, S. B. Riese, J. Dernedde, M. Taupitz, U. Rauch, R. Haag, E. Rühl, C. Graf, Nanoscale 6 (2014) 9646.CrossrefPubMedGoogle Scholar

  • 48.

    J. Lim, S. P. Yeap, H. X. Che, S. C. Low, Nanoscal. Res. Lett. 8 (2013) 381, 19 pages.Google Scholar

  • 49.

    E. Pellegrin, M. Hagelstein, S. Doyle, H. O. Moser, J. Fuchs, D. Vollath, S. Schuppler, M. A. James, S. S. Saxena, L. Niesen, O. Rogojanu, G. A. Sawatzky, C. Ferrero, M. Borowski, O. Tjernberg, N. B. Brookes, Phys. Stat. Sol. B. 215 (1999) 797.CrossrefGoogle Scholar

  • 50.

    E. J. W. Verwey, Nature 144 (1939) 327.Google Scholar

  • 51.

    D. Schmitz, C. Schmitz-Antoniak, A. Warland, M. Darbandi, S. Haldar, S. Bhandary, O. Eriksson, B. Sanyal, H. Wende, Sci. Rep. 4 (2014) 5760.PubMedGoogle Scholar

  • 52.

    P. Carra, B. T. Thole, M. Altarelli, X. Wang, Phys. Rev. Lett. 70 (1993) 694.CrossrefPubMedGoogle Scholar

  • 53.

    P. Morrall, F. Schedin, G. S. Case, M. F. Thomas, E. Dudzik, G. van der Laan, G. Thornton, Phys. Rev. B. 67 (2003) 214408, 7 pages.Google Scholar

  • 54.

    J. M. Byrne, N. D. Telling, V. S. Coker, R. A. D. Pattrick, G. van der Laan, E. Arenholz, F. Tuna, J. R. Lloyd, Nanotechnology 22 (2011) 455709, 9 pages.Google Scholar

  • 55.

    E. J. Goering, M. Lafkioti, S. Gold, G. Schuetz, J. Magn. Magn. Mater. 310 (2007) E249.CrossrefGoogle Scholar

  • 56.

    D. J. Huang, C. F. Chang, H. T. Jeng, G. Y. Guo, H. J. Lin, W. B. Wu, H. C. Ku, A. Fujimori, Y. Takahashi, C. T. Chen, Phys. Rev. Lett. 93 (2004) 077204.CrossrefPubMedGoogle Scholar

  • 57.

    D. Kim, N. Lee, M. Park, B. H. Kim, K. An, T. Hyeon, J. Am. Chem. Soc. 131 (2009) 454.CrossrefPubMedGoogle Scholar

  • 58.

    E. Goering, S. Gold, M. Lafkioti, G. Schutz, Europhys. Lett. 73 (2006) 97.CrossrefGoogle Scholar

  • 59.

    H. Wei, N. Insin, J. Lee, H.-S. Han, J. M. Cordero, W. Liu, M. G. Bawendi, Nano Lett. 12 (2012) 22.CrossrefPubMedGoogle Scholar

About the article

aFachbereich Chemie- und Biotechnologie, Hochschule Darmstadt – University of Applied Sciences, Darmstadt, Germany.


Received: 2017-11-28

Accepted: 2018-03-09

Published Online: 2018-04-13

Published in Print: 2018-05-24


Citation Information: Zeitschrift für Physikalische Chemie, Volume 232, Issue 5-6, Pages 819–844, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2017-1084.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in