Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus

12 Issues per year


IMPACT FACTOR 2017: 1.144
5-year IMPACT FACTOR: 1.144

CiteScore 2017: 1.08

SCImago Journal Rank (SJR) 2017: 0.495
Source Normalized Impact per Paper (SNIP) 2017: 0.495

Online
ISSN
2196-7156
See all formats and pricing
More options …
Ahead of print

Issues

Electrospun CuO Nanofibre Assemblies for H2S Sensing

Christoph Seitz
  • Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sebastian Werner
  • Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roland Marschall
  • Corresponding author
  • Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
  • Center for Materials Research, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bernd M. Smarsly
  • Corresponding author
  • Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
  • Center for Materials Research, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-03-16 | DOI: https://doi.org/10.1515/zpch-2017-1097

Abstract

Copper oxide (CuO) nanofibres are utilised to sense the toxic and abrasive gas hydrogen sulfide (H2S) in the ppm (parts per million) range. The detection by CuO is based on a significant increase in the conductance upon the formation of CuS, and is thereby selective and sensitive towards H2S. Nanofibres outperform thin films of CuO by compensating the volumetric stress which occurs during sensing. Here, sensors are presented exhibiting up to 600 cycles of sensing and regeneration. To get further insights into the degradation of the fibres upon the reaction with H2S the sensors were analysed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), resistance and linear sweep voltammetry (LSV) measurements before and after cycling. SEM and TEM revealed a drastic change in morphology of the CuO fibres resulting in an undefined aggregate of nanoparticles after 600 cycles. Resistance and LSV measurements showed that the contacting and the measurement process itself are crucial factors for optimising long-term use of CuO-based H2S sensors.

Keywords: copper oxide; copper sulfide; electrospinning; fibres; H2S sensor; percolation

References

  • 1.

    D. Schieder, P. Quicker, R. Schneider, H. Winter, S. Prechtl, M. Faulstich, Water Sci. Technol. 48 (2003) 209.Google Scholar

  • 2.

    P. Wheeler, J. B. Holm-Nielsen, T. Jaatinen, A. Wellinger, A. Lindberg, A. Pettigrew. IEA Bioenergy 24 (1999) 3.Google Scholar

  • 3.

    T. Sauerwald, J. Hennemann, C.-D. Kohl, T. Wagner, S. Russ, AMA Conf. 2013 (2013) 656.Google Scholar

  • 4.

    J. Hennemann, C.-D. Kohl, S. Reisert, P. Kirchner, M. J. Schöning, Phys. Status Solidi Appl. Mater. Sci. 210 (2013) 859.CrossrefGoogle Scholar

  • 5.

    N. S. Ramgir, S. K. Ganapathi, M. Kaur, N. Datta, K. P. Muthe, D. K. Aswal, S. K. Gupta, J. V. Yakhmi, Sensors Actuators, B Chem. 151 (2010) 90.CrossrefGoogle Scholar

  • 6.

    H.-B. Xu, J. Li, L.-X. Shi, Z.-N. Chen, Dalton Trans. 40 (2011) 5549.PubMedCrossrefGoogle Scholar

  • 7.

    J. Hennemann, C.-D. Kohl, B. M. Smarsly, H. Metelmann, M. Rohnke, J. Janek, D. Reppin, B. K. Meyer, S. Russ, T. Wagner, Sensors Actuators B Chem. 217 (2015) 1.CrossrefGoogle Scholar

  • 8.

    J. Dräger, S. Russ, T. Sauerwald, C.-D. Kohl, A. Bunde, J. Dräger, J. Appl. Phys. 113 (2013) 223701.CrossrefGoogle Scholar

  • 9.

    T. Sauerwald, S. Russ, Percolation Effects in Metal Oxide Gas Sensors and Related Systems. In: Gas Sensing Fundamentals, Springer, Heidelberg (2013). doi:10.1007/5346_2013_53.Google Scholar

  • 10.

    J. Kneer, S. Knobelspies, B. Bierer, J. Wöllenstein, S. Palzer, Sensors Actuators, B Chem. 222 (2016) 625.CrossrefGoogle Scholar

  • 11.

    M. Ulrich, A. Bunde, C.-D. Kohl, Appl. Phys. Lett. 85 (2004) 242.CrossrefGoogle Scholar

  • 12.

    A. Galtayries, J. Bonnelle, Surf. Interface Anal. 23 (1995) 171.CrossrefGoogle Scholar

  • 13.

    J. Hennemann, T. Sauerwald, C.-D. Kohl, T. Wagner, M. Bognitzki, A. Greiner, Phys. Status Solidi A. 209 (2012) 911.CrossrefGoogle Scholar

  • 14.

    C. Seitz, G. Beck, J. Hennemann, C. Kandzia, K. P. Hering, A. Polity, P. J. Klar, A. Paul, T. Wagner, S. Russ, B. M. Smarsly, J. Sens. Sens. Syst. 6 (2017) 163.CrossrefGoogle Scholar

  • 15.

    M. Einert, T. Weller, T. Leichtweiß, B. M. Smarsly, R. Marschall, ChemPhotoChem. 1 (2017) 326.CrossrefGoogle Scholar

  • 16.

    J. Hennemann, C.-D. Kohl, B. M. Smarsly, T. Sauerwald, J.-M. Teissier, S. Russ, T. Wagner, Phys. Status Solidi 212 (2015) 1281.CrossrefGoogle Scholar

  • 17.

    J. Kneer, J. Wöllenstein, S. Palzer, Appl. Phys. Lett. 105 (2014) 73509.CrossrefGoogle Scholar

  • 18.

    C. G. Munce, G. K. Parker, S. A. Holt, G. A. Hope, Colloids Surf. A Physicochem. Eng. Asp. 295 (2007) 152.CrossrefGoogle Scholar

  • 19.

    (NIST) PK. NIST: Neutron activation and scattering calculator. https://www.ncnr.nist.gov/resources/activation/. Accessed December 17, 2017.

  • 20.

    H. B. Michaelson, J. Appl. Phys. 48 (1977) 4729.CrossrefGoogle Scholar

  • 21.

    G. Prieto, M. Shakeri, K. P. De Jong, P. E. De Jongh, ACS Nano. 8 (2014) 2522.PubMedCrossrefGoogle Scholar

About the article

Received: 2017-12-22

Accepted: 2018-02-20

Published Online: 2018-03-16


Citation Information: Zeitschrift für Physikalische Chemie, 20171097, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2017-1097.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in