Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Zeitschrift für Physikalische Chemie

International journal of research in physical chemistry and chemical physics

Editor-in-Chief: Rademann, Klaus

12 Issues per year

IMPACT FACTOR 2017: 1.144
5-year IMPACT FACTOR: 1.144

CiteScore 2017: 1.08

SCImago Journal Rank (SJR) 2017: 0.495
Source Normalized Impact per Paper (SNIP) 2017: 0.495

See all formats and pricing
More options …
Volume 232, Issue 9-11


Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping

Oleg V. Kozlov / Rohan Singh / Bing Ai
  • State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Hubei 430070, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jihong Zhang
  • State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Hubei 430070, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chao Liu
  • State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Hubei 430070, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Victor I. Klimov
Published Online: 2018-04-14 | DOI: https://doi.org/10.1515/zpch-2018-1168


Semiconductor doped glasses had been used by the research and engineering communities as color filters or saturable absorbers well before it was realized that their optical properties were defined by tiny specs of semiconductor matter known presently as quantum dots (QDs). Nowadays, the preferred type of QD samples are colloidal particles typically fabricated via organometallic chemical routines that allow for exquisite control of QD morphology, composition and surface properties. However, there is still a number of applications that would benefit from the availability of high-quality glass-based QD samples. These prospective applications include fiber optics, optically pumped lasers and amplifiers and luminescent solar concentrators (LSCs). In addition to being perfect optical materials, glass matrices could help enhance stability of QDs by isolating them from the environment and improving heat exchange with the outside medium. Here we conduct optical studies of a new type of all-inorganic CsPbBr3 perovskite QDs fabricated directly in glasses by high-temperature precipitation. These samples are virtually scattering free and exhibit excellent waveguiding properties which makes them well suited for applications in, for example, fiber optics and LSCs. However, the presently existing problem is their fairly low room-temperature emission quantum yields of only ca. 1%–2%. Here we investigate the reasons underlying the limited emissivity of these samples by conducting transient photoluminescence (PL) and absorption measurements across a range of temperatures from 20 to 300K. We observe that the low-temperature PL quantum yield of these samples can be as high as ~25%. However, it quickly drops (in a nearly linear fashion) with increasing temperature. Interestingly, contrary to traditional thermal quenching models, experimental observations cannot be explained in terms of a thermally activated nonradiative rate but rather suggest the existence of two distinct QD sub-ensembles of “emissive” and completely “nonemissive” particles. The temperature-induced variation in the PL efficiency is likely due to a structural transformation of the QD surfaces or interior leading to formation of extremely fast trapping sites or nonemissive phases resulting in conversion of emissive QDs into nonemissive. Thus, future efforts on improving emissivity of glass-based perovskite QD samples might focus on approaches for extending the range of stability of the low-temperature highly emissive structure/phase of the QDs up to room temperature.

This article offers supplementary material which is provided at the end of the article.

Keywords: Auger recombination; carrier trapping; CsPbBr3; glass matrix; perovskite quantum dot; pholuminescence quantum yield; radiative recombination


  • 1.

    A. I. Ekimov, A. A. Onushchenko, V. A. Tzehomski, Sov. Phys. Chem. Glass 6 (1980) 511.Google Scholar

  • 2.

    A. I. Ekimov, A. A. Onushchenko, JETP Lett. 34 (1981) 345.Google Scholar

  • 3.

    V. V. Golubkov, A. I. Ekimov, A. A. Onushchenko, V. A. Tzehomski, Sov. Phys. Chem. Glass, 7 (1982) 265.Google Scholar

  • 4.

    N. F. Borrelli, D. W. Hall, H. J. Holland, D. W. Smith, J. Appl. Phys. 61 (1987) 5399.Google Scholar

  • 5.

    Y. V. Vandyshev, V. S. Dneprovskii, V. I. Klimov, JETP Lett. 53 (1991) 314.Google Scholar

  • 6.

    A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C. Flytzanis, I. A. Kudryavtsev, T. V. Yazeva, A. V. Rodina, A. L. Efros, J. Opt. Soc. Am. B 10 (1993) 100.Google Scholar

  • 7.

    M. C. Klein, F. Hache, D. Ricard, C. Flytzanis, Phys. Rev. B 42 (1990) 11123.Google Scholar

  • 8.

    S. Nomura, T. Kobayashi, Phys. Rev. B 45 (1992) 1305.Google Scholar

  • 9.

    J. L. Machol, F. W. Wise, R. C. Patel, D. B. Tanner, Phys. Rev. B 48 (1993) 2819.Google Scholar

  • 10.

    C. Trallero-Giner, A. Debernardi, M. Cardona, E. Menéndez-Proupín, A. I. Ekimov, Phys. Rev. B 57 (1998) 4664.Google Scholar

  • 11.

    Y. V. Vandyshev, V. S. Dneprovskii, V. I. Klimov, D. K. Okorokov, JETP Lett. 54 (1991) 442.Google Scholar

  • 12.

    C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 115 (1993) 8706.Google Scholar

  • 13.

    X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos, Nature 404 (2000) 59.Google Scholar

  • 14.

    N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, H. Weller, J. Phys. Chem. B 106 (2002) 7177.Google Scholar

  • 15.

    A. Eychmüller, J. Phys. Chem. B 104 (2000) 6514.Google Scholar

  • 16.

    W. Weber, J. Lambe, Appl. Opt. 15 (1976) 2299.Google Scholar

  • 17.

    H. Li, K. Wu, H.-J. Song, V. I. Klimov, Nat. Energy 1 (2016) 16157.Google Scholar

  • 18.

    L. R. Bradshaw, K. E. Knowles, S. McDowall, D. R. Gamelin, Nano Lett. 15 (2015) 1315.Google Scholar

  • 19.

    H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, V. I. Klimov, Appl. Phys. Lett. 80 (2002) 4614.Google Scholar

  • 20.

    M. A. Petruska, A. P. Bartko, V. I. Klimov, J. Am. Chem. Soc. 124 (2004) 714.Google Scholar

  • 21.

    L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 15 (2015) 3692.Google Scholar

  • 22.

    Y.-H. Suh, T. Kim, J. W. Choi, C.-L. Lee, J. Park, ACS Appl. Nano Mater. 1 (2018) 488.Google Scholar

  • 23.

    N. J. L. K. Davis, F. J. de la Peña, M. Tabachnyk, J. M. Richter, R. D. Lamboll, E. P. Booker, F. Wisnivesky Rocca Rivarola, J. T. Griffiths, C. Ducati, S. M. Menke, F. Deschler, N. C. Greenham, J. Phys. Chem. C 121 (2017) 3790.Google Scholar

  • 24.

    Z. Shi, Y. Li, Y. Zhang, Y. Chen, X. Li, D. Wu, T. Xu, C. Shan, G. Du, Nano Lett. 17 (2017) 313.Google Scholar

  • 25.

    Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, M. Xiao, J. Am. Chem. Soc. 138 (2016) 3761.Google Scholar

  • 26.

    S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, M. V. Kovalenko, Nat. Commun. 6 (2015) 8056.Google Scholar

  • 27.

    Y. Wang, X. Li, V. Nalla, H. Zeng, H. Sun, Adv. Funct. Mater. 27 (2017) 1605088.Google Scholar

  • 28.

    H. Zhao, Y. Zhou, D. Benetti, D. Ma, F. Rosei, Nano Energy 37 (2017) 214.Google Scholar

  • 29.

    F. Meinardi, Q. A. Akkerman, F. Bruni, S. Park, M. Mauri, Z. Dang, L. Manna, S. Brovelli, ACS Energy Lett. 2 (2017) 2368.Google Scholar

  • 30.

    H. Huang, M. I. Bodnarchuk, S. V. Kershaw, M. V. Kovalenko, A. L. Rogach, ACS Energy Lett. 2 (2017) 2071.Google Scholar

  • 31.

    B. Ai, C. Liu, J. Wang, J. Xie, J. Han, X. Zhao, J. Am. Ceram. Soc. 99 (2016) 2875.Google Scholar

  • 32.

    B. Ai, C. Liu, Z. Deng, J. Wang, J. Han, and X. Zhao, Phys. Chem. Chem. Phys. 19 (2017) 17349.Google Scholar

  • 33.

    N. S. Makarov, S. Guo, O. Isaienko, W. Liu, I. Robel, V. I. Klimov, Nano Lett. 16 (2016) 2349.Google Scholar

  • 34.

    L.-G. Zhang, D.-Z. Shen, X.-W. Fan, S.-Z. Lu, Chin. Phys. Lett. 19 (2002) 578.Google Scholar

  • 35.

    D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, M. Anni, Phys. Rev. B 71 (2005) 235409.Google Scholar

  • 36.

    J. Lee, E. S. Koteles, M. O. Vassell, Phys. Rev. B 33 (1986) 5512.Google Scholar

  • 37.

    C. M. Iaru, J. J. Geuchies, P. M. Koenraad, D. Vanmaekelbergh, A. Y. Silov, ACS Nano 11 (2017) 11024.Google Scholar

  • 38.

    V. I. Klimov, D. W. McBranch, Phys. Rev. Lett. 80 (1998) 4028.Google Scholar

  • 39.

    V. I. Klimov, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi, Phys. Rev. B 60 (1999) 13740.Google Scholar

  • 40.

    S. Kalytchuk, O. Zhovtiuk, S. V. Kershaw, R. Zbořil, A. L. Rogach, Small 12 (2016) 466.Google Scholar

  • 41.

    C. de Mello Donegá, M. Bode, A. Meijerink, Phys. Rev. B 74 (2006) 085320.Google Scholar

  • 42.

    J. A. McGuire, M. Sykora, I. Robel, L. A. Padilha, J. Joo, J. M. Pietryga, V. I. Klimov, ACS Nano 4 (2010) 6087.Google Scholar

  • 43.

    L. A. Padilha, I. Robel, D. C. Lee, P. Nagpal, J. M. Pietryga, V. I. Klimov, ACS Nano 5 (2011) 5045.Google Scholar

  • 44.

    M. A. Becker, R. Vaxenburg, G. Nedelcu, P. C. Sercel, A. Shabaev, M. J. Mehl, J. G. Michopoulos, S. G. Lambrakos, N. Bernstein, J. L. Lyons, T. Stöferle, R. F. Mahrt, M. V. Kovalenko, D. J. Norris, G. Rainò, A. L. Efros, Nature 553 (2018) 189.Google Scholar

  • 45.

    I. Robel, R. Gresback, U. Kortshagen, R. D. Schaller, V. I. Klimov, Phys. Rev. Lett. 102 (2009) 177404.Google Scholar

  • 46.

    V. I. Klimov, Annu. Rev. Condens. Matter Phys. 5 (2014) 13.1.Google Scholar

  • 47.

    J. A. Castañeda, G. Nagamine, E. Yassitepe, L. G. Bonato, O. Voznyy, S. Hoogland, A. F. Nogueira, E. H. Sargent, C. H. B. Cruz, L. A. Padilha, ACS Nano 10 (2016) 8603.Google Scholar

  • 48.

    H.-H. Fang, L. Protesescu, D. M. Balazs, S. Adjokatse, M. V. Kovalenko, M. A. Loi, Small 13 (2017) 1700673.Google Scholar

About the article

Received: 2018-02-28

Accepted: 2018-03-18

Published Online: 2018-04-14

Published in Print: 2018-08-28

Citation Information: Zeitschrift für Physikalische Chemie, Volume 232, Issue 9-11, Pages 1495–1511, ISSN (Online) 2196-7156, ISSN (Print) 0942-9352, DOI: https://doi.org/10.1515/zpch-2018-1168.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Nadja C. Bigall and Nikolai Gaponik
Zeitschrift für Physikalische Chemie, 2018, Volume 232, Number 9-11, Page 1263

Comments (0)

Please log in or register to comment.
Log in