Strong Migratory Connectivity in a Declining Arctic Passerine

C.A. Macdonald 1 , 2 , K.C. Fraser 3 , H.G. Gilchrist 2 , T.K. Kyser 4 , J.W. Fox 5  and O.P. Love 1
  • 1 Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 3P4
  • 2 Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada K1A 0H3
  • 3 Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
  • 4 Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario, Canada K7L 3N6
  • 5 British Antarctic Survey, Cambridge, United Kingdom CB3 0ET. Current: Migrate Technology Ltd, Cambridge, United Kingdom CB1 0QY


Determining how animal populations are linked in space and time is important for identifying factors influencing population dynamics and for effective conservation and management. Arctic-breeding migratory passerines are declining and at risk due to forecasted climate change, but are a challenge to monitor due to their inaccessible breeding locations, long-distance migration routes and small body size. For the first time, we combine sub-gram geolocator technology and stable-isotope analysis with mark-recapture (banding) and citizen science data to determine patterns of migratory connectivity for multiple populations of a declining North American Arctic-breeding passerine, snow bunting (Plectrophenax nivalis). We show strong evidence for an east-west parallel migratory system, with Hudson Bay acting as a migratory divide. While band recoveries suggest strong migratory connectivity among eastern wintering populations (more than 95% of band recoveries reveal connections between western Greenland and eastern North America), novel application of geolocators and stable-hydrogen isotope analysis to a Canadian breeding population revealed a high degree of migratory connectivity within western North American wintering populations. Our results also show distinct differences in migratory distance between eastern and western populations, and illustrate how applying multiple techniques can effectively be used to track migration patterns of remote populations. Differences in annual distribution and migratory distance suggest that separate consideration of eastern and western wintering populations may improve future conservation and management efforts for this species.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Martin T.G., Chadès I., Arcese P., Marra P.P., Possingham H.P. and Norris D.R., Optimal conservation of migratory species. PLoS ONE, 2007, 2: 751.

  • Webster M.S., Marra P.P., Haig S.M., Bensch S., Holmes R.T., Links between worlds: unraveling migratory connectivity. Trends Ecol. Evol., 2002, 17: 76–83.

  • Faaborg J., Holmes R.T., Anders A.D., Bildstein K.L., Dugger K.M., et al., Recent advances in understanding migration systems of New World land birds. Ecol. Monogr., 2010, 80(1): 3-48.

  • Grubb T.C. and Greenwald L., Sparrows and a bushpile: foraging responses to different combinations of predation risk and energy cost. Anim. Behav., 1982, 30: 637-640.

  • Brown D.R. and Long J.A., What is a winter floater? Causes, consequences, and implications for habitat selection. Condor, 2007, 109: 548-565.

  • North American Bird Conservation Initiative Canada. 2012. The State of Canada’s Birds, 2012. Environment Canada, Ottawa, Canada. 36 pages.

  • Cox G., Bird migration and global change. Washington DC: Island Press, Washington DC, 2010.

  • Birdlife International, IUCN Red List for Birds, 2012, http:// on 20/04/2012.

  • Butcher G.S. and Niven D.K., Combining data from the Christmas Bird Count and the Breeding Bird Survey to determine the continental status and trends of North American birds, 2007, cbid/report.php

  • Chabot A.A., Hobson K.A. Van Wilgenburg S.L., McQuat G.J. & Lougheed S.C., Advances in linking wintering migrant birds to their breeding-ground origins using combined analyses of genetic and stable isotope markers. PLoS ONE, 2012, 7:e43627. (doi:10.1371/journal.pone.0043627)

  • Hobson K.A., Wassenaar L.I. (Eds.), Tracking animal migration with stable isotopes, Academic Press, 2008.

  • Bowen G.J., Wassenaar L.I., Hobson K.A., Application of stable hydrogen and oxygen isotopes to wildlife forensic investigations at global scales, Oecologia, 2005, 143: 337– 348.

  • Hobson K.A., Wassenaar L.I., Linking breeding and wintering grounds of Neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers, Oecologia, 1997, 109: 142–148.

  • Stutchbury B.J.M., Tarof S.A., Done T., Gow E., Kramer P.M., Tautin J., et al., Tracking long-distance songbird migration by using geolocators, Science, 2009, 323: 896.

  • Ryder TB, Fox JW, Marra PP (2011) Estimating migratory connectivity of Gray Catbirds (Dumatella carolinensis) using geolocator and mark-recapture data. Auk 128: 448–453.

  • Tøttrup A., Klaassen R., Strandberg R., Thorup K., Kristensen M., Jørgensen P.S., et al., The annual cycle of a trans-equatorial Eurasian-African passerine migrant: different spatio-temporal strategies for autumn and spring migration, Proc. R. Soc. Biol. Sci. Ser. B, 2011, 279: 1008-1016.

  • Bairlein F., Norris D.R., Nagel R., Bulte M., Voigt C., Fox J.W., et al., Cross-hemisphere migration of a 25 g songbird, Biol. Lett., 2012 doi:10.1098/rsbl.2011.1223 1744-957X

  • Stanley C.Q., MacPherson M., Fraser K.C., McKinnon E.A., Stutchbury B.J.M., Repeat tracking of individual songbirds reveals consistent migration timing but flexibility in route, PLoS ONE, 2012, 7(7): e40688. doi:10.1371/journal. pone.0040688

  • Reichlin T.S., Schaub M., Menz M.H.M., Mermod M., Portner P., Arletta R., et al. Migration patterns of Hoopoe Upupa epops and Wryneck Jynx torquilla: an analysis of European ring recoveries, J. Ornithol., 2009 150: 393–400.

  • Lyngs P., Migration and wintering ranges of birds in Greenland: An analysis of ringing recoveries, Dansk Ornithologisk Forenings Tidsskrift, 2003, 97(1): 1-167.

  • Rappole J.H., Tipton A.R., New harness design for attachment of radio transmitters to small passerines, J. Field Ornithol., 1991, 62: 335–337.

  • Caccamise D.F. and Hedin R.S., An aerodynamic basis for selecting transmitter loads in birds. Wilson Bulletin, 1985, 97: 306-318.

  • Lisovski S., Hewson C.M., Klassen R.H.G., Korner-Nievergelt F.,Kristensen M.W. and Hahn S. Geolocation by light: accuracy and precision affected by environmental factors. Methods Ecol. and Evol., 2012, 3(3): 603-612.

  • Bächler E., Hahn S., Schaub M., Arlettaz R., Jenni L., Fox J.W., et al., Year-round tracking of small trans-Saharan migrants using light-level geolocators, PLoS ONE, 2010, 5: e9566.

  • Bearhop S., Furness R.W., Hilton G.M., Votier S.C. and Waldron S., A forensic approach to understanding diet and habitat use from stable isotope analysis of (avian) claw material, Funct. Ecol., 2003, 17(2): 270-275.

  • Fraser K.C., Kyser T.K., Robertson R.J. and Ratcliffe L.M., Seasonal patterns in hydrogen isotopes of claws from breeding wood-warblers (Parulidae): utility for estimating migratory origins. Avian Cons. Ecol., 2008, 3(1):2 http://

  • Bowen G.J., Chesson L., Nielson K., Cerling T.E. and Ehleringer J.R., Treatment methods for the determination of delta H-2 and delta O-18 of hair keratin by continuousflow isotope-ratio mass spectrometry. Rapid Commun. Mass Spectrom., 2005, 19:2371–2378.

  • Wassenaar L.I. and Hobson K.A., Comparative equilibrium and online technique for determination of non-exchangeable hydrogen for keratins for use in animal migration studies, Isotopes Environ. Health. Stud., 2003, 39(3): 211–217.

  • BirdLife International and NatureServe (2011) Bird species distribution maps of the world. BirdLife International, Cambridge, UK and NatureServe, Arlington, USA.

  • Bowen G.J., The Online Isotopes in Precipitation Calculator, version 2.2, 2012:

  • eBird: an online database of bird distribution and abundance [web application], Version 2, eBird, Ithaca, New York, 2012. Available

  • Royle J.A., Rubenstein D.R., The role of species abundance in determining the breeding origins of migratory birds using stable isotopes, Ecological Applications, 2004, 14: 1780– 1788.

  • Norris D.R., Marra P.P., Kyser T.K., Sherry T.W. and Ratcliffe L.M., Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird, Proc. R. Soc. Lond. B Biol. Sci., 2004, 271:59– 64.

  • Newton I. The Migration Ecology of Birds, Academic Press, Elsevier, London, 2008.

  • Lyon B. and Montgomerie R., Snow bunting (Plectrophenax nivalis), The Birds of North America Online (A. Poole, Ed.), Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online, 2011: http://bna.birds.

  • Fraser K.C., Stutchbury B.J.M., Silverio C., Kramer P.M., Barrow J., Newstead D., et al. Continent-wide tracking to determine migratory connectivity and tropical habitat associations of a declining aerial insectivore, Proc. R. Soc. B., 2012, 279(1749): 4901-4906 doi: 10.1098/rspb.2012.2207.

  • Beauchamp G., What is the magnitude of the group-size effect on vigilance? Behav. Ecol., 2008, 19(6):1361-1368.

  • Hurlbert A.H. and Liang Z., Spatiotemporal variation in avian migration phenology: citizen science reveals effect of climate change, PLoS ONE, 2012, 7(2): e31662. doi:10.1371/journal.pone.0031662

  • Intergovernmental Panel on Climate Change, Fourth assessment report (AR4) of the IPCC on climate change part I - the physical science basis. IPCC, Geneva, Switzerland, 2007.


Journal + Issues

Animal Migration publishes cutting-edge research on the biology of migratory species. It covers all aspects of migratory biology, from genetics and physiology to ecosystem-level interactions between migrants and their environment and everything in between. Migration is a world-wide phenomenon, hence authors from all over the globe are encouraged to submit articles to this OA journal.