Wintering Areas, Migratory Connectivity and Habitat Fidelity of Three Declining Nearctic- Neotropical Migrant Swallows

Tara Leah Imlay 1 , Keith A. Hobson 2 , Amélie Roberto-Charron 3  and Marty L. Leonard 4
  • 1 Department of Biology, Dalhousie University,, Halifax, Canada
  • 2 Departament of Biology, University of Saskatchewan, Saskatoon,, Saskatchewan, Canada
  • 3 Department of Biology, University of Manitoba,, Winnipeg, Canada
  • 4 Department of Biology, Dalhousie University,, Halifax, Canada

Abstract

Conservation efforts directed at population declines for migratory animals must consider threats occurring at different stages often separated by vast distances. Furthermore, connectivity between populations and fidelity of individuals to specific habitats during the annual cycle are also important considerations. Avian aerial insectivores are experiencing steep population declines in North America, and those declines may be driven, in part, by conditions on the wintering grounds. Here, using geolocators (2 species; 4 individuals) and stable isotope (δ2H, δ13C and δ15N) measurements of feathers (3 species; 841 individuals), we identified approximate winter areas, and assessed migratory connectivity and among-year winter habitat fidelity for three aerial insectivores (Bank Swallow Riparia riparia, Barn Swallow Hirundo rustica and Cliff Swallow Petrochelidon pyrrhonota) that breed in northeastern North America. All three species of swallows are declining in this region. Our results, largely from the stable isotope analysis, suggest that these species likely winter throughout the Cerrado, La Plata Basin, and the Pampas, in South America. These most likely areas were similar among years (2013-2016) for Bank and Cliff Swallows, but varied for Barn Swallows (2014-2016). We found weak migratory connectivity for all three species, and, with one exception, weak habitat fidelity among years for individuals. For individual Barn Swallows captured in two or more years, we found high repeatability in δ13C values, suggesting some fidelity to similar habitats among years. The most likely wintering areas for these species coincide with large areas of South America experiencing high rates of land-use change.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1] Egevang C., Stenhouse I.J., Phillips R.A., Petersen A., Fox J.W., Silk J.R.D., Tracking of Arctic Terns Sterna paradisaea reveals longest animal migration, Proc. Natl. Acad. Sci. 2010, 107, 2078-2081

  • [2] Schofield G., Hobson V.J., Fossette S., Lilley M.K.S., Katselidis K.A., Hays G.C., Fidelity to foraging sites, consistency of migration routes and habitat modulation of home range by sea turtles, Divers. Distrib. 2010, 16, 840-853

  • [3] Cherry S.G., Derocher A.E., Lunn N.J., Habitat-mediated timing of migration in polar bears: an individual perspective, Ecol. Evol. 2016, 6, 5032-5042

  • [4] Mellone U., Lopez-Lopez P., Liminana R., Piasevoli G., Urios V., The trans-equatorial loop migration system of Eleonora’s Falcon: differences in migration patterns between age classes, regions and seasons, J. Avian Biol. 2013, 44, 417-426

  • [5] Muller M.S., Massa B., Phillips R.A., Omo D., Individual consistency and sex differences in migration strategies of Scopoli’s Shearwaters Calonectris diomedea differences, Curr. Zool. 2014, 60, 631-641

  • [6] Bunnefeld N., Borger L., Van Moorter B., Rolandsen C.M., Dettki H., Solberg E.J., et al., A model-driven approach to quantify migration patterns: Individual, regional and yearly differences, J. Anim. Ecol. 2011, 80, 466-476

  • [7] Wilcove D.S., Wikelski M., Going, going, gone: Is animal migration disappearing?, PLoS Biol. 2008, 6, 1361-1364

  • [8] Webster M.S., Marra P.P., The importance of understanding migratory connectivity and seasonal interactions, In: Greenberg, R., Marra, P.P. (Eds.), Birds of Two Worlds: The Ecology and Evolution of Migration, John Hopkins University Press, Baltimore, Maryland, USA, 2005, 199-209

  • [9] Webster M.S., Marra P.P., Haig S.M., Bensch S., Holmes R.T., Links between worlds: unraveling migratory connectivity, Trends Ecol. Evol. 2002, 17, 76-83

  • [10] Taylor C.M., Norris D.R., Population dynamics in migratory networks, Theor. Ecol. 2010, 3, 65-73

  • [11] Morales J.M., Moorcroft P.R., Matthiopoulos J., Frair J.L., Kie J.G., Powell R.A., et al., Building the bridge between animal movement and population dynamics, Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2289-2301

  • [12] Matthiopoulos J., Harwood J., Thomas L., Metapopulation consequences of site fidelity for colonially breeding mammals and birds, J. Anim. Ecol. 2005, 74, 716-727

  • [13] Rubenstein D.R., Chamberlain C.P., Holmes R.T., Ayres M.P., Waldbauer J.R., Graves G.R., et al., Linking breeding and wintering ranges of a migratory songbird using stable isotopes, Science (80-. ). 2002, 295, 1062-1066

  • [14] van Wijk R.E., Bauer S., Schaub M., Repeatability of individual migration routes, wintering sites and timing in a long-distance migrant bird, Ecol. Evol. 2016, 6, 8679-8685

  • [15] Stutchbury B.J.M., Tarof S.A., Done T., Gow E., Kramer P.M., Tautin J., et al., Tracking long-distance songbird migration by using geolocators, Science (80-. ). 2009, 323, 896-896

  • [16] Szep T., Liechti F., Nagy K., Nagy Z., Hahn S., Discovering the migration and non-breeding areas of Sand Martins and House Martins breeding in the Pannonian basin (central-eastern Europe), J. Avian Biol. 2017, 48, 114-122

  • [17] English P.A., Mills A.M., Cadman M.D., Heagy A.E., Rand G.J., Green D.J., et al., Tracking the migration of a nocturnal aerial insectivore in the Americas, BMC Zool. 2017, 2, 5

  • [18] Hallworth M.T., Scott Sillett T., Van Wilgenburg S.L., Hobson K.A., Marra P.P., Migratory connectivity of a neotropical migratory songbird revealed by archival light-level geolocators, Ecol. Appl. 2015, 25, 336-347

  • [19] Fraser K.C., Shave A., Savage A., Ritchie A., Bell K., Siegrist J., et al., Determining fine-scale migratory connectivity and habitat selection for a migratory songbird by using new GPS technology, J. Avian Biol. 2017, 48, 339-345

  • [20] Cooper N.W., Hallworth M.T., Marra P.P., Light-level geolocation reveals wintering distribution, migration routes, and primary stopover locations of an endangered long-distance migratory songbird, J. Avian Biol. 2017, 48, 209-219

  • [21] Finch T., Saunders P., Aviles J.M., Bermejo A., Catry I., de la Puente J., et al., A pan-European, multipopulation assessment of migratory connectivity in a near-threatened migrant bird, Divers. Distrib. 2015, 21, 1051-1062

  • [22] Renfrew R.B., Kim D., Perlut N., Smith J., Fox J., Marra P.P., Phenological matching across hemispheres in a long-distance migratory bird, Divers. Distrib. 2013, 19, 1-12

  • [23] Costantini D., Moller A.P., A meta-analysis of the effects of geolocator application on birds, Curr. Zool. 2013, 59, 697-706

  • [24] Gomez J., Michelson C.I., Bradley D.W., Norris D.R., Berzins L.L., Dawson R.D., et al., Effects of geolocators on reproductive performance and annual return rates of a migratory songbird, J. Ornithol. 2014, 155, 1-8

  • [25] Scandolara C., Rubolini D., Ambrosini R., Caprioli M., Hahn S., Liechti F., et al., Impact of miniaturized geolocators on Barn Swallow Hirundo rustica fitness traits, J. Avian Biol. 2014, 45, 1-7

  • [26] Morganti M., Rubolini D., Akesson S., Bermejo A., de la Puente J., Lardelli R., et al., Effect of light-level geolocators on apparent survival of two highly aerial swift species, J. Avian Biol. 2018, 49, 1-10

  • [27] Hobson K.A., Stable-carbon and nitrogen isotope ratios of songbird feathers grown in two terrestrial biomes: implications for evaluating trophic relationships and breeding origins, Condor 1999, 799-805

  • [28] Inger R., Bearhop S., Applications of stable isotope analyses to avian ecology, Ibis (Lond. 1859). 2008, 150, 447-461

  • [29] Rubenstein D.R., Hobson K.A., From birds to butterflies: animal movement patterns and stable isotopes, Trends Ecol. Evol. 2004, 19, 256-63

  • [30] Bowen G.J., Wassenaar L.I., Hobson K.A., Global application of stable hydrogen and oxygen isotopes to wildlife forensics, Oecologia 2005, 143, 337-348

  • [31] Powell R.L., Yoo E.-H., Still C.J., Vegetation and soil carbon-13 isoscapes for South America: integrating remote sensing and ecosystem isotope measurements, Ecosphere 2012, 3, 109

  • [32] Hobson K.A., Clark R.G., Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation, Condor 1992, 94, 189-197

  • [33] Hobson K.A., Van Wilgenburg S.L., Wassenaar L.I., Larson K., Linking hydrogen (δ2H) isotopes in feathers and precipitation: Sources of variance and consequences for assignment to isoscapes, PLoS One 2012, 7, e35137

  • [34] Hache S., Hobson K.A., Villard M.-A., Bayne E.M., Assigning birds to geographic origin using feather hydrogen isotope ratios (δ2H): importance of year, age, and habitat, Can. J. Zool. 2012, 90, 722-728

  • [35] Hobson K.A., Van Wilgenburg S.L., Faaborg J., Toms J.D., Rengifo C., Sosa A.L., et al., Connecting breeding and wintering grounds of Neotropical migrant songbirds using stable hydrogen isotopes: a call for an isotopic atlas of migratory connectivity, J. F. Ornithol. 2014, 85, 237-257

  • [36] Garcia-Perez B., Hobson K.A., A multi-isotope (δ2H, δ13C, δ5N) approach to establishing migratory connectivity of Barn Swallow (Hirundo rustica), Ecosphere 2014, 5, 1-12

  • [37] Hjernquist M.B., Veen T., Font L., Klaassen M., High individual repeatability and population differentiation in stable isotope ratios in winter-grown Collared Flycatcher Ficedula albicollis feathers, J. Avian Biol. 2009, 40, 102-107

  • [38] Yohannes E., Bensch S., Lee R., Philopatry of winter moult area in migratory Great Reed Warblers Acrocephalus arundinaceus demonstrated by stable isotope profiles, J. Ornithol. 2008, 149, 261-265

  • [39] Goodenough A.E., Coker D.G., Wood M.J., Rogers S.L., Overwintering habitat links to summer reproductive success: intercontinental carry-over effects in a declining migratory bird revealed using stable isotope analysis, Bird Study 2017, 64, 433-444

  • [40] Hobson K.A., Isotopic ornithology: A perspective, J. Ornithol. 2011, 152, S49-S66

  • [41] Michel N.L., Smith A.C., Clark R.G., Morrissey C.A., Hobson K.A., Differences in spatial synchrony and interspecific concordance inform guild-level population trends for aerial insectivorous birds, Ecography (Cop.). 2016, 39, 774-786

  • [42] Nebel S., Mills A., McCracken J.D., Taylor P.D., Declines of aerial insectivores in North America follow a geographic gradient, Avian Conserv. Ecol. 2010, 5, 1

  • [43] Shutler D., Hussell D.J.T., Norris D.R., Winkler D.W., Robertson R.J., Bonier F., et al., Spatiotemporal patterns in nest box occupancy by Tree Swallows across North America, Avian Conserv. Ecol. 2012, 7, 3

  • [44] Smith A.C., Hudson M.-A.R., Downes C.M., Francis C.M., Change points in the population trends of aerial-insectivorous birds in North America: synchronized in time across species and regions, PLoS One 2015, 10, e0130768

  • [45] Imlay T.L., Mills Flemming J., Saldanha S., Wheelwright N.T., Leonard M.L., Breeding phenology and performance for four swallows over 57 years: relationships with temperature and precipitation, Ecosphere 2018, 9, e02166

  • [46] Sauer J.R., Niven D.K., Hines J.E., Ziolkowski, D. J. J., The North American Breeding Bird Survey, Results and Analysis 1966 -2015. Version 2.07.2017, 2017

  • [47] Garrison B.A., Bank Swallow (Riparia riparia), version 2.0, The Birds of North America (P. G. Rodewald, Ed.), Ithaca Cornell Lab Ornithol. 1999

  • [48] Brown C.R., Bomberger Brown M., Barn Swallow (Hirundo rustica), version 2.0, The Birds of North America (P. G. Rodewald, Ed.), Ithaca Cornell Lab Ornithol. 1999

  • [49] Brown C.R., Bomberger Brown M., Pyle P., Patten M.A., Cliff Swallow (Petrochelidon pyrrhonata), version 3.0, The Birds of North America (P. G. Rodewald, Ed.), Ithaca Cornell Lab Ornithol. 2017

  • [50] Imlay T.L., Mann H.A.R., Leonard M.L., No effect of insect abundance on nestling survival and mass in Barn, Cliff and Tree swallows, Avian Conserv. Ecol. 2017, 12, 19

  • [51] Rappole J.H., Tipton A.R., New harness design for attachment of radio transmitters to small passerines, J. F. Ornithol. 1991, 62, 335-337

  • [52] Pyle P., Identification guide to North American birds. Part I. Columbidae to Ploceidae, State Creek Press, Bolinas, California, USA, 1997

  • [53] Imlay T., Steenweg R., Garcia-Perez B., Hobson K., Rohwer S., Temporal and spatial patterns of flight and body feather molt for Bank, Barn and Cliff Swallows, J. F. Ornithol. 2017, 88, 405-415

  • [54] Wotherspoon S., Sumner M.D., Lisovski S., TwGeos: Basic data processing for light-level geolocation archival tags. Version 0.0-1, 2016

  • [55] Sumner M.D., Wotherspoon M.A., Hindell S.J., Bayesian estimation of animal movement from archival and satellite tags, PLoS One 2009, 4, 1055-1059

  • [56] Lisovski S., Hahn S., GeoLight - processing and analysing light-based geolocator data in R, Methods Ecol. Evol. 2012, 3, 1055-1059

  • [57] Wassenaar L.I., Hobson K.A., Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for animal migration studies, Isotopes Environ. Health Stud. 2003, 39, 211-217

  • [58] eBird, eBird: An online database of bird distribution and abundance [web application], EBird, Ithaca, NY 2012

  • [59] Ridgely R.S., Allnutt T.F., Brooks T., McNicol D.K., Mehlman D.W., Young B.E., et al., Digital distribution maps of the birds of the western hemisphere, version 1.0, NatureServe, Arlington, Virginia, USA 2003

  • [60] Hobson K.A., Kardynal K.J., An isotope (δ34S) filter and geolocator results constrain a dual feather isoscape (δ2H, δ13C) to identify the wintering grounds of North American Barn Swallows, Auk 2016, 133, 86-98

  • [61] Van Wilgenburg S.L., Hobson K.A., Combining stableisotope (δD) and band recovery data to improve probabilistic assignment of migratory birds to origin, Ecol. Appl. 2011, 21, 1340-1351

  • [62] Ambrosini R., Moller A.P., Saino N., A quantitative measure of migratory connectivity, J. Theor. Biol. 2009, 257, 203-211

  • [63] Finch T., Butler S.J., Franco A.M.A., Cresswell W., Low migratory connectivity is common in long-distance migrant birds, J. Anim. Ecol. 2017, 86, 662-673

  • [64] R Core Team, R: A Language and Environment for Statistical Computing, 2017

  • [65] Bates D., Maechler M., Bolker B., Walker S., Fitting linear mixed-effects models using lme4, J. Stat. Softw. 2015, 67, 1-48

  • [66] Hobson K.A., Kardynal K.J., Wilgenburg S.L. Van, Albrecht G., Salvadori A., Cadman M.D., et al., A continent-wide migratory divide in North American breeding Barn Swallows (Hirundo rustica), PLoS One 2015, 10, e0129340

  • [67] Baker A.J., Gonzalez P.M., Piersma T., Niles L.J., de Lima Serrano do Nascimento I., Atkinson P.W., et al., Rapid population decline in Red Knots: fitness consequences of decreased refuelling rates and late arrival in Delaware Bay, Proc. R. Soc. B Biol. Sci. 2004, 271, 875-882

  • [68] Woodworth B.K., Francis C.M., Taylor P.D., Inland flights of young Red-eyed Vireos Vireo olivaceus in relation to survival and habitat in a coastal stopover landscape, J. Avian Biol. 2014, 45, 387-395

  • [69] Newton I., Weather-related mass-mortality in migrants, Ibis (Lond. 1859). 2007, 149, 453-467

  • [70] Wellicome T.I., Fisher R.J., Poulin R.G., Todd L.D., Bayne E.M., Flockhart D.T.T., et al., Apparent survival of adult Burrowing Owls that breed in Canada is influenced by weather during migration and on their wintering grounds, Condor 2014, 116, 446-458

  • [71] Lambin E.F., Geist H.J., Lepers E., Dynamics of land-use and land-cover change in tropical regions, Annu. Rev. Environ. Resour. 2003, 28, 205-241

  • [72] Hansen M.C., Stehman S. V., Potapov P. V., Quantification of global gross forest cover loss, Proc. Natl. Acad. Sci. 2010, 107, 8650-8655

  • [73] Davidson N.C., How much wetland has the world lost? Long-term and recent trends in global wetland area, Mar. Freshw. Res. 2014, 65, 934-941

  • [74] Lee S.-J., Berbery E.H., Land cover change effects on the climate of the La Plata Basin, J. Hydrometeorol. 2012, 13, 84-102

  • [75] Sano E.E., Rosa R., Brito J.L.S., Ferreira L.G., Land cover mapping of the tropical savanna region in Brazil, Environ. Monit. Assess. 2010, 166, 113-124

  • [76] Viglizzo E.F., Frank F.C., Carreno L. V., Jobbagy E.G., Pereyra H., Clatt J., et al., Ecological and environmental footprint of 50 years of agricultural expansion in Argentina, Glob. Chang. Biol. 2011, 17, 959-973

  • [77] Loarie S.R., Lobell D.B., Asner G.P., Mu Q., Field C.B., Direct impacts on local climate of sugar-cane expansion in Brazil, Nat. Clim. Chang. 2011, 1, 105-109

  • [78] Luyssaert S., Jammet M., Stoy P.C., Estel S., Pongratz J., Ceschia E., et al., Land management and land-cover change have impacts of similar magnitude on surface temperature, Nat. Clim. Chang. 2014, 4, 389-393

  • [79] Kelly J.F., Atudorei V., Sharp Z.D., Finch D.M., Insights into Wilson’s Warbler migration from analyses of hydrogen stable-isotope ratios, Oecologia 2002, 130, 216-221

  • [80] Hahn S., Amrhein V., Zehtindijev P., Liechti F., Strong migratory connectivity and seasonally shifting isotopic niches in geographically separated populations of a long-distance migrating songbird, Oecologia 2013, 173, 1217-1225

  • [81] Moller A.P., Hobson K.A., Heterogeneity in stable isotope profiles predicts coexistence of populations of Barn Swallows Hirundo rustica differing in morphology and reproductive performance, Proc. R. Soc. B Biol. Sci. 2004, 271, 1355-1362

  • [82] Fraser K.C., Stutchbury B.J.M., Silverio C., Kramer P.M., Barrow J., Newstead D., et al., Continent-wide tracking to determine migratory connectivity and tropical habitat associations of a declining aerial insectivore, Proc. R. Soc. B Biol. Sci. 2012, 279, 4901-4906

  • [83] Trierweiler C., Klaassen R.H.G., Drent R.H., Exo K.-M., Komdeur J., Bairlein F., et al., Migratory connectivity and population- specific migration routes in a long-distance migratory bird, Proc. R. Soc. B Biol. Sci. 2014, 281, 20132897

  • [84] Szep T., Hobson K.A., Vallner J., Piper S.E., Kovacs B., Szabo D.Z., et al., Comparison of trace element and stable isotope approaches to the study of migratory connectivity: an example using two hirundine species breeding in Europe and wintering in Africa, J. Ornithol. 2009, 150, 621-636

  • [85] Lopez-Calderon C., Hobson K.A., Marzal A., Balbontin J., Reviriego M., Magallanes S., et al., Wintering areas predict age-related breeding phenology in a migratory passerine bird, J. Avian Biol. 2017, 48, 631-639

  • [86] Norris D.R., Marra P.P., Kyser T.K., Sherry T.W., Ratcliffe L.M., Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird, Proc. R. Soc. B Biol. Sci. 2004, 271, 59-64

  • [87] Saino N., Ambrosini R., Caprioli M., Romano M., Rubolini D., Scandolara C., et al., Sex-dependent carry-over effects on timing of reproduction and fecundity of a migratory bird, J. Anim. Ecol. 2017, 86, 239-249

  • [88] Cowley E., Siriwardena G.M., Long-term variation in survival rates of Sand Martins Riparia riparia: dependence on breeding and wintering ground weather, age and sex, and their population consequences, Bird Study 2005, 52, 237-251

  • [89] Drake A., Rock C., Quinlan S.P., Green D.J., Carry-over effects of winter habitat vary with age and sex in Yellow Warblers Setophaga petechia, J. Avian Biol. 2013, 44, 321-330

  • [90] Lopez-Calderon C., Hobson K.A., Marzal A., Balbontin J., Reviriego M., Magallanes S., et al., Environmental conditions during winter predict age- and sex-specific differences in reproductive success of a trans-Saharan migratory bird, Sci. Rep. 2017, 7, 18082

  • [91] Tonra C.M., Both C., Marra P.P., Incorporating site and year-specific deuterium ratios (d2H) from precipitation into geographic assignments of a migratory bird, J. Avian Biol. 2015, 46, 266-274

  • [92] Vander Zanden H.B., Wunder M.B., Hobson K.A., Van Wilgenburg S.L., Wassenaar L.I., Welker J.M., et al., Contrasting assignment of migratory organisms to geographic origins using long-term versus year-specific precipitation isotope maps, Methods Ecol. Evol. 2014, 5, 891-900

  • [93] van Dijk J.G.B., Meissner W., Klaassen M., Improving provenance studies in migratory birds when using feather hydrogen stable isotopes, J. Avian Biol. 2014, 45, 103-108

  • [94] Van Wilgenburg S.L., Hobson K.A., Brewster K.R., Welker J.M., Assessing dispersal in threatened migratory birds using stable hydrogen isotope (δD) analysis of feathers, Endanger. Species Res. 2012, 16, 17-29

  • [95] Gomez C., Bayly N.J., Norris D.R., Mackenzie S.A., Rosenberg K. V., Taylor P.D., et al., Fuel loads acquired at a stopover site influence the pace of intercontinental migration in a boreal songbird, Sci. Rep. 2017, 7, 1-11

  • [96] Langin K.M., Reudink M.W., Marra P.P., Norris D.R., Kyser T.K., Ratcliffe L.M., Hydrogen isotopic variation in migratory bird tissues of known origin: implications for geographic assignment, Oecologia 2007, 152, 449-457

  • [97] Nordell C.J., Hache S., Bayne E.M., Solymos P., Foster K.R., Godwin C.M., et al., Within-site variation in feather stable hydrogen isotope (δ2Hf) values of boreal songbirds: Implications for assignment to molt origin, PLoS One 2016, 11, 1-15

  • [98] Hallworth M.T., Studds C.E., Sillett T.S., Marra P.P., Do archival light-level geolocators and stable hydrogen isotopes provide comparable estimates of breeding-ground origin?, Auk 2013, 130, 273-282

  • [99] Gaston K.J., Fuller R.A., Commonness, population depletion and conservation biology, Trends Ecol. Evol. 2008, 23, 14-19

  • [100] Runge C.A., Martin T.G., Possingham H.P., Willis S.G., Fuller R.A., Conserving mobile species, Front. Ecol. Environ. 2014, 12, 395-402

  • [101] Sherry T.W., Johnson M.D., Strong A.M., Does winter food limit populations of migratory birds?, In: Greenberg, R., Marra, P.P. (Eds.), Birds of Two Worlds: The Ecology and Evolution of Migration, John Hopkins University Press, Baltimore, Maryland, USA, 2005, 414-425

  • [102] Rioux Paquette S., Garant D., Pelletier F., Belisle M., Seasonal patterns in Tree Swallow prey (Diptera) abundance are affected by agricultural intensification, Ecol. Appl. 2013, 123, 122-133

  • [103] Benton T.G., Bryant D.M., Cole L., Crick H.Q.P., Linking agricultural practice to insect and bird populations: a historical study over three decades, J. Appl. Ecol. 2002, 39, 673-687

  • [104] Pisa L.W., Amaral-Rogers V., Belzunces L.P., Bonmatin J.M., Downs C.A., Goulson D., et al., Effects of neonicotinoids and fipronil on non-target invertebrates, Environ. Sci. Pollut. Res. 2015, 22, 68-102

  • [105] Morrissey C.A., Mineau P., Devries J.H., Sanchez-Bayo F., Liess M., Cavallaro M.C., et al., Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review, Environ. Int. 2015, 74, 291-303

OPEN ACCESS

Journal + Issues

Animal Migration publishes cutting-edge research on the biology of migratory species. It covers all aspects of migratory biology, from genetics and physiology to ecosystem-level interactions between migrants and their environment and everything in between. Migration is a world-wide phenomenon, hence authors from all over the globe are encouraged to submit articles to this OA journal.

Search