Alternate migration strategies of eastern monarch butterflies revealed by stable isotopes

Hannah B. Vander Zanden 1 , Carol L. Chaffee 2 , Antonio González-Rodríguez 3 , D.T. Tyler Flockhart 4 , D. Ryan Norris 5  and Marta L. Wayne 6
  • 1 University of Florida,, Gainesville, USA
  • 2 California State University Fullerton,, Fullerton, USA
  • 3 Universidad Nacional Autónoma de México (UNAM),, Mexico City, Mexico
  • 4 University of Maryland Center for Environmental Science, Appalachian Laboratory,, Frostburg, USA
  • 5 University of Guelph,, Guelph, Canada
  • 6 University of Florida, Gainesville,, Florida, USA


Alternative life history strategies are mechanisms by which organisms are able to maximize fitness across a range of environmental conditions. Fitness is maximized by different strategies depending on context, resulting in trade-offs between life history strategies. Monarch butterflies (Danaus plexippus) employ both migratory and resident life history strategies. Since residents breed throughout the year, but migrants overwinter in reproductive diapause, there are fitness trade-offs between the two strategies. We used stable isotope analysis to evaluate the geographic origins of monarchs in a yearround population in south Florida. Based on stable isotope profiles of hydrogen and carbon (δ2H and δ13C values), we found that 48% (16/33) of monarchs collected in south Florida are migrants that originated from outside the sampling region. Migrants had a larger wing length than residents; thus, switching to a resident strategy could alter their probability of reproductive success. Further work is needed to investigate the mechanism underlying this pattern, but these findings show that alternate life history strategies and sex-specific behaviors are underexplored factors influencing monarch migration and evolution.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Grönroos J., Green M., Alerstam T., To fly or not to fly depending on winds: shorebird migration in different seasonal wind regimes, Anim. Behav., 2012, 83, 1449-1457

  • [2] Vande Velde L., Van Dyck H., Lipid economy, flight activity and reproductive behaviour in the speckled wood butterfly: on the energetic cost of territory holding, Oikos, 2013, 122, 555-562

  • [3] Judge K.A., Ting J.J., Gwynne D.T., Condition dependence of male life span and calling effort in a field cricket, Evolution, 2008, 62, 868-878

  • [4] Leary C.J., Fox D.J., Shepard D.B., Garcia A.M., Body size, age, growth and alternative mating tactics in toads: satellite males are smaller but not younger than calling males, Anim. Behav., 2005, 70, 663-671

  • [5] Greenfield M.D., Shelly T.E., Alternative mating strategies in a desert grasshopper: evidence of density-dependence, Anim. Behav., 1985, 33, 1192-1210

  • [6] Smith M.D., Schrank H.E., Brockmann H.J., Measuring the costs of alternative reproductive tactics in horseshoe crabs, Limulus polyphemus, Anim. Behav., 2013, 85, 165-173

  • [7] Hews D.K., Knapp R., Moore M.C., Early exposure to androgens affects adult expression of alternative male types in tree lizards, Horm. Behav., 1994, 28, 96-115

  • [8] Páez D.J., Brisson-Bonenfant C., Rossignol O., Guderley H.E., Bernatchez L., Dodson J.J., Alternative developmental pathways and the propensity to migrate: a case study in the Atlantic salmon, J. Evol. Biol., 2011, 24, 245-255

  • [9] Chapman B.B., Brönmark C., Nilsson J.-Å., Hansson L.-A., The ecology and evolution of partial migration, Oikos, 2011, 120, 1764-1775

  • [10] Semmens B.X., Semmens D.J., Thogmartin W.E., Wiederholt R., López-Hoffman L., Diffendorfer J.E., et al., Quasi-extinction risk and population targets for the Eastern, migratory population of monarch butterflies (Danaus plexippus), Sci. Rep., 2016, 6, 23265

  • [11] Flockhart D.T.T., Pichancourt J.-B., Norris D.R., Martin T.G., Unravelling the annual cycle in a migratory animal: breedingseason habitat loss drives population declines of monarch butterflies, J. Anim. Ecol., 2015, 84, 155-165

  • [12] Pleasants J.M., Oberhauser K.S., Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population, Insect Conserv. Divers., 2013, 6, 135-144

  • [13] Pleasants J., Milkweed restoration in the Midwest for monarch butterfly recovery: estimates of milkweeds lost, milkweeds remaining and milkweeds that must be added to increase the monarch population, Insect Conserv. Divers., 2016

  • [14] Inamine H., Ellner S.P., Springer J.P., Agrawal A.A., Linking the continental migratory cycle of the monarch butterfly to understand its population decline, Oikos, 2016, 125, 1081-1091

  • [15] Agrawal A.A., Inamine H., Mechanisms behind the monarch’s decline, Science, 2018, 360, 1294-1296

  • [16] Oberhauser K., Wiederholt R., Diffendorfer J.E., Semmens D., Ries L., Thogmartin W.E., et al., A trans-national monarch butterfly population model and implications for regional conservation priorities, Ecol. Entomol., 2017, 42, 51-60

  • [17] Goehring L., Oberhauser K.S., Effects of photoperiod, temperature, and host plant age on induction of reproductive diapause and development time in Danaus plexippus, Ecol. Entomol., 2002, 27, 674-685

  • [18] Urquhart F.A., Urquhart N.R., Overwintering areas and migratory routes of the monarch butterfly (Danaus p. plexippus, Lepidoptera: Danaidae) in North America, with special reference to the western population, Can. Entomol., 1977, 109, 1583-1589

  • [19] Pyle R.M., Chasing Monarchs: Migrating with the Butterflies of Passage, Houghton Mifflin Co., 1999

  • [20] Dockx C., Directional and stabilizing selection on wing size and shape in migrant and resident monarch butterflies, Danaus plexippus (L.), in Cuba, Biol. J. Linn. Soc., 2007, 92, 605-616

  • [21] Knight A., Brower L.P., The influence of Eastern North American autumnal migrant monarch butterflies (Danaus plexippus L.) on continuously breeding resident monarch populations in southern Florida, J. Chem. Ecol., 2009, 35, 816-823

  • [22] Howard E., Aschen H., Davis A.K., Citizen science observations of monarch butterfly overwintering in the southern United States, Psyche J. Entomol., 2010

  • [23] Zalucki M.P., Rochester W.A., Estimating the effect of climate on the distribution and abundance of Danaus plexippus: a tale of two continents, In: Hoth, J., Merino, L., Oberhauser, K.S., Pisanty, I., Price, S., Wilkinson, T. (Eds.), Proceedings of the North American Conference on the Monarch Butterfly, Commission for Environmental Cooperation, Montreal, Canada, 1999, 151-163

  • [24] Zhan S., Zhang W., Niitepõld K., Hsu J., Haeger J.F., Zalucki M.P., et al., The genetics of monarch butterfly migration and warning colouration, Nature, 2014, 514, 317-321

  • [25] Brower L.P., Studies on the migration of the monarch butterfly I. Breeding populations of Danaus plexippus and D. gilippus berenice in south central Florida, Ecology, 1961, 42, 76-83

  • [26] Urquhart F.A., Urquhart N.R., Aberrant autumnal migration of the eastern population of the monarch butterfly, Danaus plexippus plexippus (Lepidoptera: Danaidae) as it relates to the occurrence of strong westerly winds, Can. Entomol., 1979, 111, 1281-1286

  • [27] Knight A., A Population Study of Monarch Butterflies in North- Central and South Florida, Master thesis, : University of Florida, Gainesville, FL, 1998.

  • [28] Dockx C., Migration of the North American Monarch, Danaus plexippus, to Cuba, Dissertation, : University of Florida, Gainesville, FL, 2002.

  • [29] Hobson K.A., Wassenaar L.I. (Eds.), Tracking animal migration with stable isotopes, Elsevier, Amsterdam, 2008

  • [30] Wassenaar L.I., Hobson K.A., Natal origins of migratory monarch butterflies at wintering colonies in Mexico: New isotopic evidence, Proc. Natl. Acad. Sci., 1998, 95, 15436-15439

  • [31] Hobson K.A., Wassenaar L.I., Taylor O.R., Stable isotopes (δD and δ13C) are geographic indicators of natal origins of monarch butterflies in eastern North America, Oecologia, 1999, 120, 397-404

  • [32] Bowen G.J., Statistical and geostatistical mapping of precipitation water isotope ratios, In: West, J.B., Bowen, G.J., Dawson, T.E., Tu, K.P. (Eds.), Isoscapes: Understanding Movement, Pattern, and Process on Earth through Isotope Mapping, Springer, New York, 2010, 139-160

  • [33] Suits N.S., Denning A.S., Berry J.A., Still C.J., Kaduk J., Miller J.B., et al., Simulation of carbon isotope discrimination of the terrestrial biosphere, Glob. Biogeochem. Cycles, 2005, 19

  • [34] Altizer S., Davis A.K., Populations of monarch butterflies with different migratory behaviors show divergence in wing morphology, Evolution, 2010, 64, 1018-1028

  • [35] Li Y., Pierce A.A., de R.J.C., Variation in forewing size linked to migratory status in monarch butterflies, Anim. Migr., 2016, 3, 27-34

  • [36] Hobson K., Plint T., Serrano E.G., Alvarez X.M., Ramirez I., Longstaffe F., Within-wing isotopic (δ2H, δ13C, δ15N) variation of monarch butterflies: implications for studies of migratory origins and diet, Anim. Migr., 2017, 4, 8-14

  • [37] Wassenaar L.I., Hobson K.A., Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies, Isotopes Environ. Health Stud., 2003, 39, 211-217

  • [38] Bowen G.J., Wassenaar L.I., Hobson K.A., Global application of stable hydrogen and oxygen isotopes to wildlife forensics, Oecologia, 2005, 143, 337-348

  • [39] Flockhart D.T.T., Wassenaar L.I., Martin T.G., Hobson K.A., Wunder M.B., Norris D.R., Tracking multi-generational colonization of the breeding grounds by monarch butterflies in eastern North America, Proc. R. Soc. B Biol. Sci., 2013, 280, 20131087

  • [40] Miller N.G., Wassenaar L.I., Hobson K.A., Norris D.R., Monarch butterflies cross the Appalachians from the west to recolonize the east coast of North America, Biol. Lett., 2011, 7, 43-46

  • [41] R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2016

  • [42] Flockhart D.T.T., Brower L.P., Ramirez M.I., Hobson K.A., Wassenaar L.I., Altizer S., et al., Regional climate on the breeding grounds predicts variation in the natal origin of monarch butterflies overwintering in Mexico over 38 years, Glob. Change Biol., 2017, 23, 2565-2576

  • [43] Dockx C., Brower L.P., Wassenaar L.I., Hobson K.A., Do North American monarch butterflies travel to Cuba? Stable isotope and chemical tracer techniques, Ecol. Appl., 2004, 14, 1106-1114

  • [44] Dockx C., Differences in phenotypic traits and migratory strategies between eastern North American monarch butterflies, Danaus plexippus (L.), Biol. J. Linn. Soc., 2012, 106, 717-736

  • [45] Lack D., The problem of partial migration, Br. Birds, 1943, 37, 122-130

  • [46] Lundberg P., The evolution of partial migration in Birds, Trends Ecol. Evol., 1988, 3, 172-175

  • [47] Mysterud A., Loe L.E., Zimmermann B., Bischof R., Veiberg V., Meisingset E., Partial migration in expanding red deer populations at northern latitudes - a role for density dependence?, Oikos, 2011, 120, 1817-1825

  • [48] Chapman B.B., Skov C., Hulthén K., Brodersen J., Nilsson P.A., Hansson L.-A., et al., Partial migration in fishes: definitions, methodologies and taxonomic distribution, J. Fish Biol., 2012, 81, 479-499

  • [49] Daniels J.C., Seasonal variation in the little sulphur butterfly, Eurema lisa lisa, in central Florida: how it compares to other sympatric Eurema species (Lepidoptera: Pieridae), Holarct. Lepidoptera, 1995, 2, 59-65

  • [50] Ladner D.T., Altizer S., Oviposition preference and larval performance of North American monarch butterflies on four Asclepias species, Entomol. Exp. Appl., 2005, 116, 9-20

  • [51] Atterholt A.L., Solensky M.J., Effects of larval rearing density and food availability on adult size and coloration in monarch butterflies (Lepidoptera: Nymphalidae), J. Entomol. Sci., 2010, 45, 366-377

  • [52] Brower L.P., Fink L.S., Walford P., Fueling the fall migration of the monarch butterfly, Integr. Comp. Biol., 2006, 46, 1123-1142

  • [53] Flockhart D.T.T., Fitz-gerald B., Brower L.P., Derbyshire R., Altizer S., Hobson K.A., et al., Migration distance as a selective episode for wing morphology in a migratory insect, Mov. Ecol., 2017, 5, 7

  • [54] Yang L.H., Ostrovsky D.M., Rogers M.C., Welker J.M., Intrapopulation variation in the natal origins and wing morphology of overwintering western monarch butterflies (Danaus plexippus), Ecography, 2015, 39, 998-1007

  • [55] Davis A.K., Cope N., Smith A., Solensky M.J., Wing color predicts future mating success in male monarch butterflies, Ann. Entomol. Soc. Am., 2007, 100, 339-344

  • [56] Van Hook T., Monarch butterfly mating ecology at a Mexican overwintering site : proximate causes of non-random mating, Dissertation, University of Florida, Gainesville, FL, 1996.

  • [57] Alonso-Mejía A., Rendon-Salinas E., Montesinos-Patiño E., Brower L.P., Use of lipid reserves by monarch butterflies overwintering in Mexico: implications for conservation, Ecol. Appl., 1997, 7, 934-947

  • [58] Oberhauser K.S., Male monarch butterfly spermatophore mass and mating strategies, Anim. Behav., 1988, 36, 1384-1388

  • [59] Oberhauser K.S., Effects of spermatophores on male and female monarch butterfly reproductive success, Behav. Ecol. Sociobiol., 1989, 25, 237-246

  • [60] Altizer S.M., Oberhauser K.S., Brower L.P., Associations between host migration and the prevalence of a protozoan parasite in natural populations of adult monarch butterflies, Ecol. Entomol., 2000, 25, 125-139

  • [61] McLaughlin R.E., Myers J., Ophryocystis elektroscirrha sp. n., a neogregarine pathogen of the monarch butterfly Danaus plexippus (L.) and the Florida queen butterfly D. gilippus berenice Cramer, J. Protozool., 1970, 17, 300-305

  • [62] Leong K.L.H., Yoshimura M.A., Kaya H.K., Williams H., Instar susceptibility of the monarch butterfly (Danaus plexippus) to the neogregarine parasite, Ophryocystis elektroscirrha, J. Invertebr. Pathol., 1997, 69, 79-83

  • [63] Altizer S.M., Oberhauser K.S., Geurts K.A., Transmission of the protozoan parasite, Ophryocystis elektroscirrha, in monarch butterfly populations: implications for prevalence and population-level impacts, In: Oberhauser, K.S., Solensky, M. (Eds.), The Monarch Butterfly: Biology and Conservation, Cornell University Press, Ithaca, NY, 2004, 203-218

  • [64] Altizer S.M., Oberhauser K.S., Effects of the protozoan parasite Ophryocystis elektroscirrha on the fitness of monarch butterflies (Danaus plexippus), J. Invertebr. Pathol., 1999, 74, 76-88

  • [65] Mongue A.J., Tsai M.V., Wayne M.L., Roode J.C. de, Inbreeding depression in monarch butterflies, J. Insect Conserv., 2016, 20, 477-483

  • [66] Altizer S., Bartel R., Han B.A., Animal migration and infectious disease risk, Science, 2011, 331, 296-302

  • [67] Flockhart D.T.T., Dabydeen A., Satterfield D.A., Hobson K.A., Wassenaar L.I., Norris D.R., Patterns of parasitism in monarch butterflies during the breeding season in eastern North America, Ecol. Entomol., 2018, 43, 28-36

  • [68] Bartel R.A., Oberhauser K.S., Roode J.C. de, Altizer S.M., Monarch butterfly migration and parasite transmission in eastern North America, Ecology, 2011, 92, 342-351

  • [69] Satterfield D.A., Maerz J.C., Altizer S., Loss of migratory behaviour increases infection risk for a butterfly host, Proc. R. Soc. Lond. B Biol. Sci., 2015, 282, 20141734

  • [70] Monarch Watch: Dedicated to Education, Conservation & Research. Monarch Watch, 2016

  • [71] Howard E., Davis A.K., Documenting the spring movements of monarch butterflies with Journey North, a citizen science program, In: Oberhauser, K.S., Solensky, M.J. (Eds.), The Monarch Butterfly: Biology & Conservation, Cornell University Press, Ithaca, NY, 2004, 105-114

  • [72] Lyons J.I., Pierce A.A., Barribeau S.M., Sternberg E.D., Mongue A.J., De Roode J.C., Lack of genetic differentiation between monarch butterflies with divergent migration destinations, Mol. Ecol., 2012, 21, 3433-3444

  • [73] Taborsky M., Brockmann H.J., Alternative reproductive tactics and life history phenotypes, In: Kappeler, P. (Ed.), Animal Behaviour: Evolution and Mechanisms, Springer Verlag, Berlin, 2010, 537-586.


Journal + Issues

Animal Migration publishes cutting-edge research on the biology of migratory species. It covers all aspects of migratory biology, from genetics and physiology to ecosystem-level interactions between migrants and their environment and everything in between. Migration is a world-wide phenomenon, hence authors from all over the globe are encouraged to submit articles to this OA journal.