Ab initio study of the structure and stability of CaMg(CO3)2 at high pressure

Natalia V. Solomatova 1  and Paul D. Asimow 1
  • 1 Division of Geological and Planetary Sciences, Caltech, Pasadena, California 91125 United States of America
Natalia V. Solomatova and Paul D. Asimow

Abstract

Dolomite is one of the major mineral forms in which carbon is subducted into the Earth’s mantle. End-member CaMg(CO3)2 dolomite typically breaks down upon compression into two carbonates at 5–6 GPa in the temperature range of 800–1200 K (). However, high-pressure X-ray diffraction experiments have shown that dense high-pressure polymorphs of dolomite may be favored over single-cation carbonates (; ; ). Here we compare calculated dolomite structures to experimentally observed phases. Using density functional theory interfaced with a genetic algorithm that predicts crystal structures (USPEX), a monoclinic phase with space group C2/c was found to have lower energy at pressures above 15 GPa than all previously reported dolomite structures. It is possible that this phase is not observed experimentally due to a large activation energy of transition from dolomite I, resulting in the observed second-order phase transition to a metastable dolomite II. Due to the complex energy landscape for candidate high-pressure dolomite structures, several structurally unique metastable polymorphs exist. We calculate the equation of state of a set of lowest-energy dolomite polymorphs with space groups P1¯, P2/c, and C2/c up to 80 GPa. Our results demonstrate a need for calculations and experiments on Fe-Mn bearing high-pressure carbonate phases to extend our understanding of Earth’s deep carbon cycle and test whether high-pressure polymorphs of double-cation carbonates represent the main reservoir for carbon storage within downwelling regions of Earth’s mantle.

  • Blöchl, P.E. (1994) Projector augmented-wave method. Physical Review B, 50, 17953.

    • Crossref
    • Export Citation
  • Boulard, E., Menguy, N., Auzende, A.L., Benzerara, K., Bureau, H., Antonangeli, D., Corgne, A., Morard, G., Siebert, J., Perrillat, J.P, and Guyot, F. (2012) Experimental investigation of the stability of Fe-rich carbonates in the lower mantle. Journal of Geophysical Research: Solid Earth, 117, B02208.

  • Boulard, E., Pan, D., Galli, G., Liu, Z., and Mao, W.L. (2015) Tetrahedrally coordinated carbonates in Earth’s lower mantle. Nature Communications, 6, 6311.

    • Crossref
    • PubMed
    • Export Citation
  • Brenker, F.E., Vollmer, C., Vincze, L., Vekemans, B., Szymanski, A., Janssens, K., and Kaminsky, F. (2006) CO2-recycling to the deep convecting mantle. Geochimica et Cosmochimica Acta, 70, A66.

    • Crossref
    • Export Citation
  • Brenker, F.E., Vollmer, C., Vincze, L., Vekemans, B., Szymanski, A., Janssens, K., Szaloki, I., Nasdala, L., Joswig, W., and Kaminsky, F. (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth and Planetary Science Letters, 260, 1–9.

    • Crossref
    • Export Citation
  • Eggler, D.H. (1976) Does CO2 cause partial melting in the low-velocity layer of the mantle? Geology, 4, 69–72.

  • ——— (1987) Solubility of major and trace elements in mantle metasomatic fluids: Experimental constraints. Mantle Metasomatism, Academic Press London, 21–41.

  • Hazen, R.M., Jones, A.P., and Baross, J.A., Eds. (2013) Carbon in Earth. Reviews in Mineralogy and Geochemistry, 75, 698 p.

  • Isshiki, M., Irifune, T., Hirose, K., Ono, S., Ohishi, Y., Watanuki, T., Nishibori, E., Takata, M., and Sakata, M. (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature, 427, 60–63.

    • Crossref
    • PubMed
    • Export Citation
  • Kelemen, P.B., and Manning, C.E. (2015) Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proceedings of the National Academy of Sciences, 112, E3997–E4006.

    • Crossref
    • Export Citation
  • Kresse, G., and Furthmüller, J. (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15–50.

    • Crossref
    • Export Citation
  • Mao, Z., Armentrout, M., Rainey, E., Manning, C.E., Dera, P., Prakapenka, V.B., and Kavner, A. (2011) Dolomite III: A new candidate lower mantle carbonate. Geophysical Research Letters, 38, L22303.

  • Martinez, I., Zhang, J., and Reeder, R.J. (1996) In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature; evidence for dolomite breakdown to aragonite and magnesite. American Mineralogist, 81, 611–624.

    • Crossref
    • Export Citation
  • Merlini, M., Crichton, W.A., Hanfland, M., Gemmi, M., Müller, H., Kupenko, I., and Dubrovinsky, L. (2012) Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proceedings of the National Academy of Sciences, 109, 13509–13514.

    • Crossref
    • Export Citation
  • Momma, K., and Izumi, F. (2008) VESTA: A three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41, 653–658.

    • Crossref
    • Export Citation
  • Mörner, N.A., and Etiope, G. (2002) Carbon degassing from the lithosphere. Global and Planetary Change, 33, 185–203.

    • Crossref
    • Export Citation
  • Murakami, M., Hirose, K., Kawamura, K., Sata, N., and Ohishi, Y. (2004) Postperovskite phase transition in MgSiO3. Science, 304, 855–858.

  • Oganov, A.R., and Glass, C.W. (2006) Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. The Journal of Chemical Physics, 124, 244704.

    • Crossref
    • PubMed
    • Export Citation
  • Oganov, A.R., and Ono, S. (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D” layer. Nature, 430, 445–448.

    • Crossref
    • PubMed
    • Export Citation
  • Oganov, A.R., Glass, C.W., and Ono, S. (2006) High-pressure phases of CaCO3: Crystal structure prediction and experiment. Earth and Planetary Science Letters, 241, 95–103.

    • Crossref
    • Export Citation
  • Oganov, A.R., Ono, S., Ma, Y., Glass, C.W., and Garcia, A. (2008) Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth’s lower mantle. Earth and Planetary Science Letters, 273, 38–47.

    • Crossref
    • Export Citation
  • Oganov, A.R., Hemley, R.J., Hazen, R.M., and Jones, A.P. (2013) Structure, bonding, and mineralogy of carbon at extreme conditions. Reviews in Mineralogy and Geochemistry, 75, 47–77.

    • Crossref
    • Export Citation
  • Ono, S., Kikegawa, T., Ohishi, Y., and Tsuchiya, J. (2005) Post-aragonite phase transformation in CaCO3 at 40 GPa. American Mineralogist, 90, 667–671.

    • Crossref
    • Export Citation
  • Perdew, J.P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation made simple. Physical Review Letters, 77, 3865.

    • Crossref
    • PubMed
    • Export Citation
  • Ross, N.L., and Reeder, R.J. (1992) High-pressure structural study of dolomite and ankerite. American Mineralogist, 77, 412–421.

  • Santillán, J., Williams, Q., and Knittle, E. (2003) Dolomite-II: A high-pressure polymorph of CaMg(CO3)2. Geophysical Research Letters, 30, 1054.

  • Shcheka, S.S., Wiedenbeck, M., Frost, D.J., and Keppler, H. (2006) Carbon solubility in mantle minerals. Earth and Planetary Science Letters, 245, 730–742.

    • Crossref
    • Export Citation
  • Shirasaka, M., Takahashi, E., Nishihara, Y., Matsukage, K., and Kikegawa, T. (2002) In situ X-ray observation of the reaction dolomite = aragonite + magnesite at 900–1300 K. American Mineralogist, 87, 922–930.

    • Crossref
    • Export Citation
  • Skorodumova, N.V., Belonoshko, A.B., Huang, L., Ahuja, R., and Johansson, B. (2005) Stability of the MgCO3 structures under lower mantle conditions. American Mineralogist, 90, 1008–1011.

    • Crossref
    • Export Citation
  • Smyth, J.R., and Ahrens, T.J. (1997) The crystal structure of calcite III. Geophysical Research Letters, 24, 1595–1598.

    • Crossref
    • Export Citation
  • Sobolev, N.V., and Shatsky, V.S. (1990) Diamond inclusions in garnets from metamorphic rocks: A new environment for diamond formation. Nature, 343, 742–746.

    • Crossref
    • Export Citation
  • Sturhahn, W. (2015) MINUTI open source software, ver. 1.1.2, www.nrixs.com. Accessed on March 2015.

  • Wyllie, P.J., Baker, M.B., and White, B.S. (1990) Experimental boundaries for the origin and evolution of carbonatites. Lithos, 26, 3–19.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search