Experimental evidence for the survival of augite to transition zone depths, and implications for subduction zone dynamics

Jingui Xu 1 , 2 , 3 , Dongzhou Zhang 2 , Przemyslaw Dera 2 , Bo Zhang 1 , 3  and Dawei Fan 1
  • 1 Key Laboratory of High Temperature and High Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, 550081, Guiyang, China
  • 2 Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1680 East West Road, POST Building, Honolulu, Hawaii, U.S.A
  • 3 University of Chinese Academy of Sciences, 100049, Beijing, China
Jingui Xu
  • Key Laboratory of High Temperature and High Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
  • Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1680 East West Road, POST Building, Honolulu, Hawaii, 96822, U.S.A
  • University of Chinese Academy of Sciences, Beijing, 100049, China
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Dongzhou Zhang
  • Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1680 East West Road, POST Building, Honolulu, Hawaii, 96822, U.S.A
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Przemyslaw Dera
  • Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1680 East West Road, POST Building, Honolulu, Hawaii, 96822, U.S.A
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Bo Zhang
  • Key Laboratory of High Temperature and High Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
  • University of Chinese Academy of Sciences, Beijing, 100049, China
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Dawei Fan
  • Corresponding author
  • Key Laboratory of High Temperature and High Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

(Ca, Mg)-rich clinopyroxenes are abundant in Earth’s upper mantle and subduction zones. Experimental studies on the thermoelastic properties of these minerals at simultaneous high pressure and high temperature are important for constraining of the composition and structure of the Earth. Here, we present a synchrotron-based single-crystal X-ray diffraction study of natural diopside-dominated augite [(Ca0.89Na0.05Mg0.06)(Mg0.74Fe0.11Al0.14Ti0.01)(Si1.88Al0.12) O6.00] at P and T to ~27 GPa and 700 K. The experiment simulates conditions in cold subducting slabs, and results indicate that augite is stable over this pressure and temperature range. A third-order high-temperature Birch-Murnaghan equation was fit with the pressure-volume-temperature data, yielding the following thermoelastic parameters: KT0 = 111(1) GPa, KT0 = 4.1(1), (∂K0/∂T)P = −0.008(5) GPa/K and αT = 4(1)×10−5 K−1 +2(3)×10−8 K−2 T. A strain analysis shows that the compression along the three principal stress directions is highly anisotropic with ε1:ε2:ε3 = 1.98:2.43:1.00. Additionally, high-pressure structural refinements of room-temperature polyhedral geometry, bond lengths and O3-O3-O3 angle were investigated to ~27 GPa at ambient temperature. Pressure dependences of polyhedral volumes and distortion indicate that the substitution of Al3+ for Si4+ significantly changes the compressional behavior of the TO4-tetrahedron in augite. Density calculations of this augite along a subducting slab geotherm suggest that augite as well as other common clinopyroxenes would promote slab stagnations at transition zone depths if they are metastably preserved in significant quantities.

  • Agrusta, R., Hunen, J., and Goes, S. (2014) The effect of metastable pyroxene on the slab dynamics. Geophysical Research Letters, 41(24), 8800–8808.

  • Akaogi, M., and Akimoto, S.-i. (1977) Pyroxene-garnet solid-solution equilibria in the systems Mg4Si4O12-Mg3Al2Si3O12 and Fe4Si4O12-Fe3Al2Si3O12 at high pressures and temperatures. Physics of the Earth and Planetary Interiors, 15(1), 90–106.

  • Akashi, A., Nishihara, Y., Takahashi, E., Nakajima, Y., Tange, Y., and Funakoshi, K.i. (2009) Orthoenstatite/clinoenstatite phase transformation in MgSiO3 at high-pressure and high-temperature determined by in situ X-ray diffraction: Implications for nature of the X discontinuity. Journal of Geophysical Research, 114, B04206.

  • Aleksandrov, K., and Rythova, T. (1961) The elastic properties of rock forming minerals, pyroxenes and amphiboles. Bulletin of Academy of Sciences, USSR, Geophysical Series, 871–875.

  • Angel, R.J. (2000) Equations of state. Reviews in Mineralogy and Geochemistry, 41(1), 35–59.

  • Angel, R.J. (2015) Win_Strain Program for Strain Calculations, http://www.rossangel.net.

  • Angel, R.J., Gonzalez-Platas, J., and Alvaro, M. (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie, 229(5), 405–419.

  • Banno, S. (1959) Aegirinaugites from crystalline schists in Sikoku. Journal of Geological Society of Japan, 65, 652–657.

  • Bina, C.R. (2013) Mineralogy: Garnet goes hungry. Nature Geoscience, 6(5), 335–336.

  • Bindi, L., Safonov, O.G., Yapaskurt, V.O., Perchuk, L.L., and Menchetti, S. (2003) Letter. Ultrapotassic clinopyroxene from the Kumdy-Kol microdiamond mine, Kokchetav Complex, Kazakhstan: Occurrence, composition and crystal-chemical characterization. American Mineralogist, 88, 464–468.

  • Chopelas, A., and Serghiou, G. (2002) Spectroscopic evidence for pressure-induced phase transitions in diopside. Physics and Chemistry of Minerals, 29(6), 403–408.

  • Clark, J.R., Appleman, D.E., and Papike, J. (1969) Crystal-chemical characterization of clinopyroxenes based on eight new structure refinements. Mineralogical Society of America Special Paper, 2, 31–50.

  • Dera, P., Finkelstein, G.J., Duffy, T.S., Downs, R.T., Meng, Y., Prakapenka, V., and Tkachev, S. (2013a) Metastable high-pressure transformations of ortho-ferrosilite Fs 82. Physics of the Earth and Planetary Interiors, 221, 15–21.

  • Dera, P., Zhuravlev, K., Prakapenka, V., Rivers, M.L., Finkelstein, G.J., Grubor-Urosevic, O., Tschauner, O., Clark, S.M., and Downs, R.T. (2013b) High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Pressure Research, 33(3), 466–484.

  • Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339–341.

  • Downs, R.T. (2003) Topology of the pyroxenes as a function of temperature, pressure, and composition as determined from the procrystal electron density. American Mineralogist, 88(4), 556–566.

  • Downs, R.T., and Singh, A.K. (2006) Analysis of deviatoric stress from nonhydrostatic pressure on a single crystal in a diamond anvil cell: The case of monoclinic aegirine, NaFeSi2O6. Journal of Physics and Chemistry of Solids, 67(9-10), 1995–2000.

  • Dziewonski, A.M., and Anderson, D.L. (1981) Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356.

  • Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182–9186.

  • Finger, W., and Ohashi, N.Y. (1976) The thermal expansion of diopside to 800 °C and a refinement of the crystal structure at 700 °C. American Mineralogist, 61, 303–310.

  • Finkelstein, G.J., Dera, P.K., Jahn, S., Oganov, A.R., Holl, C.M., Meng, Y., and Duffy, T.S. (2014) Phase transitions and equation of state of forsterite to 90 GPa from single-crystal X-ray diffraction and molecular modeling. American Mineralogist, 99(1), 35–43.

  • Frost, D.J. (2008) The upper mantle and transition zone. Elements, 4(3), 171–176.

  • Fukao, Y., and Obayashi, M. (2013) Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research: Solid Earth, 118(11), 5920–5938.

  • Fukao, Y., Widiyantoro, S., and Obayashi, M. (2001) Stagnant slabs in the upper and lower mantle transition region. Reviews of Geophysics, 39(3), 291–323.

  • Ganguly, J., Freed, A.M., and Saxena, S.K. (2009) Density profiles of oceanic slabs and surrounding mantle: Integrated thermodynamic and thermal modeling, and implications for the fate of slabs at the 660km discontinuity. Physics of the Earth and Planetary Interiors, 172(3), 257–267.

  • Grand, S.P. (2002) Mantle shear–wave tomography and the fate of subducted slabs. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 360(1800), 2475–2491.

  • Green, D., and Ringwood, A. (1967) The stability fields of aluminous pyroxene peridotite and garnet peridotite and their relevance in upper mantle structure. Earth and Planetary Science Letters, 3, 151–160.

  • Hazen, R.M., and Finger, L.W. (1977) Compressibility and crystal structure of Angra dos Reis fassaite to 52 kbar. Carnegie Institution of Washington Year Book, 76, 512–515.

  • Hu, Y., Dera, P., and Zhuravlev, K. (2015) Single-crystal diffraction and Raman spectroscopy of hedenbergite up to 33 GPa. Physics and Chemistry of Minerals, 42, 595–608.

  • Ito, E., and Takahashi, E. (1989) Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. Journal of Geophysical Research: Solid Earth, 94(B8), 10637–10646.

  • Kantor, I., Prakapenka, V., Kantor, A., Dera, P., Kurnosov, A., Sinogeikin, S., Dubrovinskaia, N., and Dubrovinsky, L. (2012) BX90: A new diamond anvil cell design for X-ray diffraction and optical measurements. Review of Scientific Instruments, 83(12), 125102.

  • Kawakatsu, H., and Yoshioka, S. (2011) Metastable olivine wedge and deep dry cold slab beneath southwest Japan. Earth and Planetary Science Letters, 303(1), 1–10.

  • King, S.D., Frost, D.J., and Rubie, D.C. (2015) Why cold slabs stagnate in the transition zone. Geology, 43(3), 231–234.

  • Knight, K.S. (2010) Analytical expressions to determine the isothermal compressibility tensor and the isobaric thermal expansion tensor for monoclinic crystals: application to determine the direction of maximum compressibility in jadeite. Physics and Chemistry of Minerals, 37(8), 529–533.

  • Levien, L., and Prewitt, C.T. (1981) High-pressure structural study of diopside. American Mineralogist, 66, 315–323.

  • Li, C., van der Hilst, R.D., Engdahl, E.R., and Burdick, S. (2008) A new global model for P wave speed variations in Earth’s mantle. Geochemistry, Geophysics, Geosystems, 9(5).

  • Liu, L.-G. (1976) The post-spinel phase of forsterite. Nature, 262, 770–772.

  • McCarthy, A.C., Downs, R.T., and Thompson, R.M. (2008a) Compressibility trends of the clinopyroxenes, and in-situ high-pressure single-crystal X-ray diffraction study of jadeite. American Mineralogist, 93(1), 198–209.

  • McCarthy, A.C., Downs, R.T., Thompson, R.M., and Redhammer, G.J. (2008b) In situ high-pressure single-crystal X-ray study of aegirine, NaFe3+Si2O6, and the role of M1 size in clinopyroxene compressibility. American Mineralogist, 93, 1829–1837.

  • Nestola, F., Ballaran, T.B., Liebske, C., Bruno, M., and Tribaudino, M. (2006) High-pressure behaviour along the jadeite NaAlSi2O6-aegirine NaFeSi2O6 solid solution up to 10 GPa. Physics and Chemistry of Minerals, 33(6), 417–425.

  • Nishi, M., Kato, T., Kubo, T., and Kikegawa, T. (2008) Survival of pyropic garnet in subducting plates. Physics of the Earth and Planetary Interiors, 170(3), 274–280.

  • Nishi, M., Kubo, T., and Kato, T. (2009) Metastable transformations of eclogite to garnetite in subducting oceanic crust. Journal of Mineralogical and Petrological Sciences, 104(3), 192–198.

  • Nishi, M., Kubo, T., Ohfuji, H., Kato, T., Nishihara, Y., and Irifune, T. (2013) Slow Si–Al interdiffusion in garnet and stagnation of subducting slabs. Earth and Planetary Science Letters, 361, 44–49.

  • Nishihara, Y., Takahashi, E., Matsukage, K., and Kikegawa, T. (2003) Thermal equation of state of omphacite. American Mineralogist, 88, 80–86.

  • O’Har, M. (1961) Petrology of the Scourie dyke, Sutherland. Mineralogical Magazine, 32, 848–865.

  • Ohashi, Y. (1982) STRAIN, a program to calculate the strain tensor from two sets of unit-cell parameters. In R.M. Hazen and L.W. Finger, Eds., Comparative Crystal Chemistry, Wiley, New York, pp. 92–102.

  • Otten, M.T., and Buseck, P.R. (1987) TEM study of the transformation of augite to sodic pyroxene in eclogitized ferrogabbro. Contributions to Mineralogy and Petrology, 96(4), 529–538.

  • Plonka, A.M., Dera, P., Irmen, P., Rivers, M.L., Ehm, L., and Parise, J.B. (2012) β-diopside, a new ultrahigh-pressure polymorph of CaMgSi2O6 with six-coordinated silicon. Geophysical Research Letters, 39(24).

  • Posner, E.S., Dera, P., Downs, R.T., Lazarz, J.D., and Irmen, P. (2014) High-pressure single-crystal X-ray diffraction study of jadeite and kosmochlor. Physics and Chemistry of Minerals, 41(9), 695–707.

  • Richet, P., Mysen, B.O., and Ingrin, J. (1998) High-temperature X-ray diffraction and Raman spectroscopy of diopside and pseudowollastonite. Physics and Chemistry of Minerals, 25(6), 401–414.

  • Ringwood, A.E. (1982) Phase transformations and differentiation in subducted lithosphere: implications for mantle dynamics, basalt petrogenesis, and crustal evolution. The Journal of Geology, 611–643.

  • Rivers, M., Prakapenka, V.B., Kubo, A., Pullins, C., Holl, C.M., and Jacobsen, S.D. (2008) The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source. High Pressure Research, 28(3), 273–292.

  • Robinson, K., Gibbs, G., and Ribbe, P. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567–570.

  • Rooney, T.O., Furman, T., Yirgu, G., and Ayalew, D. (2005) Structure of the Ethiopian lithosphere: Xenolith evidence in the Main Ethiopian Rift. Geochimica et Cosmochimica Acta, 69(15), 3889–3910.

  • Schlinger, C.M., and Veblen, D.R. (1989) Magnetism and transmission electron microscopy of Fe-Ti oxides and pyroxenes in a granulite from Lofoten, Norway. Journal of Geophysical Research: Solid Earth, 94(B10), 14009–14026.

  • Schorn, S., and Diener, J.F. (2016) Details of the gabbro–to–eclogite transition determined from microtextures and calculated chemical potential relationships. Journal of Metamorphic Geology, doi:10.1111/jmg.12220.

  • Sheldrick, G.M. (2007) A short history of SHELX. Acta Crystallographica, A64(1), 112–122.

  • Shinmei, T., Tomioka, N., Fujino, K., Kuroda, K., and Irifune, T. (1999) In situ X-ray diffraction study of enstatite up to 12 GPa and 1473 K and equations of state. American Mineralogist, 84, 1588–1594.

  • Takeda, H., Yugami, K., Bogard, D., and Miyamoto, M. (1997) Plagioclase-augite-rich gabbro in the Caddo County IAB iron, and the missing basalts associated with iron meteorites. Lunar and Planetary Science Conference, 28, 409.

  • Thompson, R.M., and Downs, R.T. (2008) The crystal structure of diopside at pressure to 10 GPa. American Mineralogist, 93, 177–186.

  • Tracy, R., and Robinson, P. (1977) Zoned titanian augite in alkali olivine basalt from Tahiti and the nature of titanium substitutions in augite. American Mineralogist, 62, 634–645.

  • Tribaudino, M., and Mantovani, L. (2014) Thermal expansion in C2/c pyroxenes: a review and new high-temperature structural data for a pyroxene of composition (Na0.53Ca0.47)(Al0.53Fe0.47)Si2O6 (Jd53Hd47). Mineralogical Magazine, 78(2), 311–324.

  • Tribaudino, M., Nestola, F., Bruno, M., Boffa Ballaran, T., and Liebske, C. (2008) Thermal expansion along the NaAlSi(2)O(6)-NaFe(3+)Si(2)O(6) and NaAlSi(2) O(6)-CaFe(2+)Si(2)O(6) solid solutions. Physics and Chemistry of Minerals, 35(5), 241–248.

  • Ullrich, A., Miletich, R., Balic-Zunic, T., Olsen, L., Nestola, F., Wildner, M., and Ohashi, H. (2010) (Na, Ca)(Ti3+, Mg) Si2O6-clinopyroxenes at high pressure: influence of cation substitution on elastic behavior and phase transition. Physics and Chemistry of Minerals, 37(1), 25–43.

  • Van der Hilst, R., Widiyantoro, S., and Engdahl, E. (1997) Evidence for deep mantle circulation from global tomography. Nature, 386, 578–584.

  • Van Mierlo, W., Langenhorst, F., Frost, D., and Rubie, D. (2013) Stagnation of subducting slabs in the transition zone due to slow diffusion in majoritic garnet. Nature Geoscience, 6(5), 400–403.

  • Xu, J., Kuang, Y., Zhang, B., Liu, Y., Fan, D., Li, X., and Xie, H. (2016) Thermal equation of state of natural tourmaline at high pressure and temperature. Physics and Chemistry of Minerals, 43(5), 315–326.

  • Xu, J., Zhang, D., Fan, D., Downs, R.T., Hu, Y., and Dera, P. (2017) Isosymmetric pressure-induced bonding increase changes compression behavior of clinopyroxenes across jadeite-aegirine solid solution in subduction zones. Journal of Geophysical Research: Solid Earth, 122(1), 142–157.

  • Yang, H., and Prewitt, C.T. (2000) Chain and layer silicates at high temperatures and pressures. Reviews in Mineralogy and Geochemistry, 41(1), 211–255.

  • Zhang, L., Ahsbahs, H., Hafner, S.S., and Kutoglu, A. (1997) Single-crystal compression and crystal structure of clinopyroxene up to 10 GPa. American Mineralogist, 82(3), 245–258.

  • Zhang, L., Stanek, J., Hafner, S., Ahsbahs, H., Grünsteudel, H., and Metge, J. (1999) 57Fe nuclear forward scattering of synchrotron radiation in hedenbergite CaFeSi2O6 at hydrostatic pressures up to 68 GPa. American Mineralogist, 84(3), 447–453.

  • Zhang, J.S., Dera, P., and Bass, J.D. (2012) A new high-pressure phase transition in natural Fe-bearing orthoenstatite. American Mineralogist, 97(7), 1070–1074.

  • Zhang, D., Hu, Y., and Dera, P.K. (2016) Compressional behavior of omphacite to 47 GPa. Physics and Chemistry of Minerals, 43(10), 707–715.

  • Zhang, D., Dera, P.K., Eng, P.J., Stubbs, J.E., Zhang, J.S., Prakapenka, V.B., and Rivers, M.L. (2017) High pressure single crystal diffraction at PX^2. Journal of Visualized Experiments, 119, e54660, .

    • Crossref
    • Export Citation
  • Zhao, Y., Dreele, R.V., Zhang, J., and Weidner, D. (1998) Thermoelastic equation of state of monoclinic pyroxene: CaMgSi2O6 diopside. The Review of High Pressure Science and Technology, 7, 25–27.

  • Zhao, Y., Von Dreele, R.B., Shankland, T.J., Weidner, D.J., Zhang, J., Wang, Y., and Gasparik, T. (1997) Thermoelastic equation of state of jadeite NaAlSi2O6: An energy-dispersive Reitveld refinement study of low symmetry and multiple phases diffraction. Geophysical Research Letters, 24(1), 5–8.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search