Periodic Impact Motions at Resonance of a Particle Bouncing on Spheres and Cylinders

  • 1 Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, 60131, Ancona, Italy
Andrea SfecciORCID iD: http://orcid.org/0000-0002-8580-3026

Abstract

We investigate the existence of periodic trajectories of a particle, subject to a central force, which can hit a sphere or a cylinder. We will also provide a Landesman–Lazer-type condition in the case of a nonlinearity satisfying a double resonance condition. Afterwards, we will show how such a result can be adapted to obtain a new result for the impact oscillator at double resonance.

  • [1]

    C. Bapat, Periodic motions of an impact oscillator, J. Sound Vibration 209 (1998), 43–60.

    • Crossref
    • Export Citation
  • [2]

    F. Battelli and M. Fečkan, Chaos in forced impact systems, Discrete Contin. Dyn. Syst. 6 (2013), 861–890.

  • [3]

    D. Bonheure and C. Fabry, Periodic motions in impact oscillators with perfectly elastic bounces, Nonlinearity 15 (2002), 1281–1297.

    • Crossref
    • Export Citation
  • [4]

    G. Buttazzo and D. Percivale, On the approximation of the elastic bounce problem on Riemannian manifolds, J. Differential Equations 47 (1983), 227–245.

    • Crossref
    • Export Citation
  • [5]

    M. Carriero and E. Pascali, Uniqueness of the one-dimensional bounce problem as a generic property in L 1 ( [ 0 , T ] ; ) {L^{1}([0,T];{\mathbb{R}})}, Boll. Unione Mat. Ital. A (6) 1 (1982), 87–91.

  • [6]

    M. Del Pino, R. Manásevich and A. Montero, T-periodic solutions for some second order differential equations with singularities, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 231–243.

    • Crossref
    • Export Citation
  • [7]

    P. Drabek and S. Invernizzi, On the periodic boundary value problem for forced Duffing equations with jumping nonlinearity, Nonlinear Anal. 19 (1986), 643–650.

  • [8]

    C. Fabry, Landesman–Lazer conditions for periodic boundary value problems with asymmetric nonlinearities, J. Differential Equations 116 (1995), 405–418.

    • Crossref
    • Export Citation
  • [9]

    C. Fabry and A. Fonda, Periodic solutions of nonlinear differential equations with double resonance, Ann. Mat. Pura Appl. (4) 157 (1990), 99–116.

    • Crossref
    • Export Citation
  • [10]

    C. Fabry and P. Habets, Periodic solutions of second order differential equations with superlinear asymmetric nonlinearities, Arch. Math. 60 (1993), 266–276.

    • Crossref
    • Export Citation
  • [11]

    L. Fernandes and F. Zanolin, Periodic solutions of a second order differential equation with one-sided growth restriction on the restoring term, Arch. Math. 51 (1988), 151–163.

    • Crossref
    • Export Citation
  • [12]

    A. Fonda, On the existence of periodic solutions for scalar second order differential equations when only the asymptotic behavior of the potential is known, Proc. Amer. Math. Soc. 119 (1993), 439–445.

    • Crossref
    • Export Citation
  • [13]

    A. Fonda and M. Garrione, Double resonance with Landesman–Lazer conditions for planar systems of ordinary differential equations, J. Differential Equations 250 (2011), 1052–1082.

    • Crossref
    • Export Citation
  • [14]

    A. Fonda and M. Garrione, A Landesman–Lazer type condition for asymptotically linear second-order equations with a singularity, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), 1263–1277.

    • Crossref
    • Export Citation
  • [15]

    A. Fonda and J. Mawhin, Planar differential systems at resonance, Adv. Differential Equations 11 (2006), 1111–1133.

  • [16]

    A. Fonda and A. Sfecci, A general method for the existence of periodic solutions of differential equations in the plane, J. Differential Equations 252 (2012), 1369–1391.

    • Crossref
    • Export Citation
  • [17]

    A. Fonda and A. Sfecci, Periodic bouncing solutions for nonlinear impact oscillators, Adv. Nonlinear Stud. 13 (2013), 179–189.

  • [18]

    A. Fonda and A. Sfecci, On a singular periodic Ambrosetti–Prodi problem, Nonlinear Anal. 149 (2017), 146–155.

    • Crossref
    • Export Citation
  • [19]

    A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach, J. Differential Equations 244 (2008), 3235–3264.

    • Crossref
    • Export Citation
  • [20]

    A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth, Nonlinear Anal. 74 (2011), 2485–2496.

    • Crossref
    • Export Citation
  • [21]

    A. Fonda and R. Toader, Periodic solutions of radially symmetric perturbations of Newtonian systems, Proc. Amer. Math. Soc 140 (2012), 1331–1341.

    • Crossref
    • Export Citation
  • [22]

    A. Fonda, R. Toader and F. Zanolin, Periodic solutions of singular radially symmetric systems with superlinear growth, Ann. Mat. Pura Appl. (4) 191 (2012), 181–204.

    • Crossref
    • Export Citation
  • [23]

    J. P. Gossez and P. Omari, A necessary and sufficient condition of nonresonance for a semilinear Neumann problem, Proc. Amer. Math. Soc. 114 (1992), 433–442.

    • Crossref
    • Export Citation
  • [24]

    P. Habets, P. Omari and F. Zanolin, Nonresonance conditions on the potential with respect to the Fučík spectrum for the periodic boundary value problem, Rocky Mountain J. Math. 25 (1995), 1305–1340.

    • Crossref
    • Export Citation
  • [25]

    M.-Y. Jiang, Periodic solutions of second order differential equations with an obstacle, Nonlinearity 19 (2006), 1165–1183.

    • Crossref
    • Export Citation
  • [26]

    M.-Y. Jiang, Periodic motions in the Fermi–Ulam model, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), 1235–1259.

    • Crossref
    • Export Citation
  • [27]

    H. Lamba, Chaotic regular and unbounded behaviour in the elastic impact oscillator, Phys. D 82 (1995), 117–135.

    • Crossref
    • Export Citation
  • [28]

    A. C. Lazer and P. J. McKenna, Periodic bouncing for a forced linear spring with obstacle, Differential Integral Equations 5 (1992), 165–172.

  • [29]

    J. Mawhin and J. R. Ward, Periodic solutions of some forced Liénard differential equations at resonance, Arch. Math. 41 (1983), 337–351.

    • Crossref
    • Export Citation
  • [30]

    R. Ortega, Dynamics of a forced oscillator having an obstacle, Variational and Topological Methods in the Study of Nonlinear Phenomena (Pisa 2000), Progr. Nonlinear Differential Equations Appl. 49, Birkhäuser, Boston (2002), 75–87.

  • [31]

    R. Ortega, Linear motions in a periodically forced Kepler problem, Port. Math. 68 (2011), 149–176.

  • [32]

    D. B. Qian, Large amplitude periodic bouncing for impact oscillators with damping, Proc. Amer. Math. Soc. 133 (2005), 1797–1804.

    • Crossref
    • Export Citation
  • [33]

    D. B. Qian and P. J. Torres, Periodic motions of linear impact oscillators via the successor map, SIAM J. Math. Anal. 36 (2005), 1707–1725.

    • Crossref
    • Export Citation
  • [34]

    A. Ruiz-Herrera and P. J. Torres, Periodic solutions and chaotic dynamics in forced impact oscillators, SIAM J. Appl. Dyn. Syst. 12 (2013), 383–414.

    • Crossref
    • Export Citation
  • [35]

    A. Sfecci, Positive periodic solutions for planar differential systems with repulsive singularities on the axes, J. Math. Anal. Appl. 415 (2014), 110–120.

    • Crossref
    • Export Citation
  • [36]

    A. Sfecci, Double resonance for one-sided superlinear or singular nonlinearities, Ann. Mat. Pura Appl. (4) 195 (2016), 2007–2025.

    • Crossref
    • Export Citation
  • [37]

    X. Sun and D. B. Qian, Periodic bouncing solutions for attractive singular second-order equations, Nonlinear Anal. 71 (2009), 4751–4757.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search