Broadband and scalable optical coupling for silicon photonics using polymer waveguides

Antonio La Porta 1 , Jonas Weiss 1 , Roger Dangel 1 , Daniel Jubin 1 , Norbert Meier 1 , Folkert Horst 1  and Bert Jan Offrein 1
  • 1 IBM Zurich Research Laboratory, Ruschlikon, Switzerland
Antonio La Porta, Jonas Weiss, Roger Dangel, Daniel Jubin, Norbert Meier, Folkert Horst and Bert Jan Offrein

Abstract

We present optical coupling schemes for silicon integrated photonics circuits that account for the challenges in large-scale data processing systems such as those used for emerging big data workloads. Our waveguide based approach allows to optimally exploit the on-chip optical feature size, and chip- and package real-estate. It further scales well to high numbers of channels and is compatible with state-of-the-art flip-chip die packaging. We demonstrate silicon waveguide to polymer waveguide coupling losses below 1.5 dB for both the O- and C-bands with a polarisation dependent loss of <1 dB. Over 100 optical silicon waveguide to polymer waveguide interfaces were assembled within a single alignment step, resulting in a physical I/O channel density of up to 13 waveguides per millimetre along the chip-edge, with an average coupling loss of below 3.4 dB measured at 1310 nm.

  • [1]

    J. Weiss, R. Dangel, J. Hofrichter, F. Horst, D. Jubin, et al., Optical Interconnects for Disaggregated Resources in Future Datacenters, 2014 The European Conference on Optical Communication (ECOC) (Cannes, France, 2014).

  • [2]

    D. A. B. Miller and H. M. Ozaktas, J. Parallel Distrib. Comput. 41, 42–52 (1997).

  • [3]

    Y. A. Vlasov, IEEE Commun. Mag. 50, 67–72 (2012).

  • [4]

    C. R. Doerr, IEICE Trans. Electron. 96, 950–957 (2013).

  • [5]

    Y. Hibino, MRS Bull. 28, 365–371 (2003).

  • [6]

    X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, R. T. Chen, IEEE J. Sel. Top. Quant. 19, 196–210 (2013).

  • [7]

    P. A. Francese, T. Toifl, M. Braendli, C. Menolfi, M. Kossel, et al., 10.6 Continuous-Time Linear Equalization with Programmable Active-Peaking Transistor Arrays in a 14nm FinFET 2mW/Gb/s 16Gb/s 2-Tap Speculative DFE Receiver, IEEE ISSCC (San Francisco, CA, USA, 2015).

  • [8]

    CISCO, Cisco Global Cloud Index: Forecast and Methodology, 2015–2020 (2016). Available at: https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf.

  • [9]

    InfiniBand Trade Association, InfiniBand® Roadmap. Available at: http://www.infinibandta.org/content/pages.php?pg=technology_overview, Accessed: 7/Feb/2018.

  • [10]

    A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, et al., Optics for High-Performance Servers and Supercomputers, OFC Conference (San Diego, CA, USA, 2010).

  • [11]

    S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, et al., A 90nm CMOS Integrated Nano-Photonics Technology for 25Gbps WDM Optical Communications Applications, IEDM (San Francisco, CA, USA, 2012).

  • [12]

    C. R. Doerr, Front. Phys. 3, 37 (2015).

  • [13]

    H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, et al., Opt. Express 23, 2487–2511 (2015).

  • [14]

    R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, et al., J. Lightwave Technol. 31, 3915–3926 (2013).

  • [15]

    R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, et al., Opt. Express 23, 4736–4750 (2015).

  • [16]

    A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, et al., IEEE J. Sel. Top. Quant. 17, 597–608 (2011).

  • [17]

    T. Barwicz, N. Boyer, A. Janta-Polczynski, J.-F. Morisette, Y. Thibodeau, et al., A Metamaterial Converter Centered at 1490 nm for Interfacing Standard Fibers to Nanophotonic Waveguides, OFC, 2016 (Anaheim, CA, USA, 2016).

  • [18]

    P. De Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, et al., Si Photonics Based High-Speed Optical Transceivers, ECOC (Amsterdam, The Netherlands, 2012).

  • [19]

    I. M. Soganci, A. La Porta, and B. J. Offrein, Opt. Express 21, 16075–16085 (2013).

  • [20]

    T. Barwicz, Y. Taira, S. Takenobu, N. Boyer, A. Janta-Polczynski, et al., Optical Demonstration of a Compliant Polymer Interface between Standard Fibers and Nanophotonic Waveguides, OFC (CA, USA, 2015).

  • [21]

    A. La Porta, J. Weiss, R. Dangel, D. Jubin, N. Meier, et al., Silicon Photonics Packaging for Highly Scalable Optical Interconnects, ECTC (San Diego, CA, USA, 2015).

  • [22]

    A. La Porta, R. Dangel, D. Jubin, N. Meier, D. Chelladurai, et al., Scalable Optical Coupling between Silicon Photonics Waveguides and Polymer Waveguides, ECTC (Las Vegas, NV, USA, 2016).

  • [23]

    A. La Porta, R. Dangel, D. Jubin, F. Horst, N. Meier, et al., Optical Coupling between Polymer Waveguides and a Silicon Photonics Chip in the O-band, OFC (Anaheim, CA, USA, 2016).

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development.

Search