Monolithic photonic integration for visible and short near-infrared wavelengths: technologies and platforms for bio and life science applications

Marco A.G. Porcel 1 , Iñigo Artundo 1 , J. David Domenech 1 , Douwe Geuzebroek 2 , Rino Sunarto 3  and Romano Hoofman 4
  • 1 VLC Photonics, Ed. 9B, D2, UPV, Camino de vera sn, 46022 Valencia, Spain
  • 2 LioniX International, Hengelosestraat 500, 7521 AN Enschede, The Netherlands
  • 3 PhoeniX Software B. V., Capitool 50, 7521 PL Enschede, The Netherlands
  • 4 IMEC, Kapeldreef 75, 3001 Heverlee, Belgium
Marco A.G. Porcel
  • Corresponding author
  • VLC Photonics, Ed. 9B, D2, UPV, Camino de vera sn, 46022 Valencia, Spain
  • Email
  • Further information
  • Marco A.G. Porcel obtained his MSc in Telecom Engineering at the Polytechnic University of Valencia (UPV, Spain) in 2011. He continued with his PhD degree (defended on December 2017) on nonlinear control of light in integrated waveguides at the Laser Physics and Nonlinear Optics group (LPNO) part of the MESA+ Institute for Nanotechnology at the University of Twente (The Netherlands). In 2017, he joined VLC Photonics as the R&D Manager, working on the field of photonic integrated circuits.
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Iñigo Artundo
  • VLC Photonics, Ed. 9B, D2, UPV, Camino de vera sn, 46022 Valencia, Spain
  • Further information
  • Iñigo Artundo obtained his MSc in Telecom Engineering at the Universidad Publica de Navarra (Pamplona, Spain) in 2005 and received his PhD in Applied Physics and Photonics at the Vrije Universiteit Brussel (Brussels, Belgium) in 2009. He has been involved in several national and European research projects and networks of excellence focused on optical telecom and interconnects, micro-optics, and photonic integration. He has worked as a reviewer for several scientific journals, national and international funding agencies. He holds specializations in Business Financing, Commercial Management and Research, and Strategic Marketing. He is a member of IEEE, SPIE, and COIT. He currently is the CEO of VLC Photonics, working in the field of photonic integrated circuits.
  • Search for other articles:
  • degruyter.comGoogle Scholar
, J. David Domenech
  • VLC Photonics, Ed. 9B, D2, UPV, Camino de vera sn, 46022 Valencia, Spain
  • Further information
  • J. David Domenech received his BSc degree in Telecommunications and his MSc degree in Technologies, Systems and Networks of Communication from the Universidad Politecnica de Valencia (UPV) in 2006 and 2008, respectively. He obtained his PhD degree in Optics at the Telecommunications and Multimedia Applications Institute (iTEAM) from UPV, inside the Optical and Quantum Communications Group, focusing his research in the use of integrated ring resonators for microwave photonics applications. Since 2006, he has been working on the design of integrated optic circuits in indium phosphide/silicon nitride/SOI technologies within several European and national research projects. In 2012, he was awarded with the Intel PhD Honor Programme award. He is currently the CTO of VLC Photonics, working in the field of photonic integrated circuits.
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Douwe Geuzebroek
  • LioniX International, Hengelosestraat 500, 7521 AN Enschede, The Netherlands
  • Further information
  • Douwe Geuzebroek is the VP of sales and marketing at LioniX International. He holds a masters degree in Electrical Engineering of the University of Twente and did a PhD research at the Integrated Optical MicroSystems group on the topic of ‘Flexible Optical Network Components Based on Densely Integrated Micro-ring Resonators’. Besides this, he finished an introduction program at the TSM Business School. In 2005, he joined LioniX b.v. as a design engineer and project leader focusing on micro-ring resonators and other integrated optical telecommunication devices and was actively involved in the start-up of XiO Photonics in 2009.
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Rino Sunarto
  • PhoeniX Software B. V., Capitool 50, 7521 PL Enschede, The Netherlands
  • Further information
  • Rino Sunarto studied at the Saint Joseph College Malang and obtained his BEng on Electrical and Electronic Engineering in 2008 at the Saxion University of Applied Sciences. He was an ASIC design engineer at Bruco B. V. from 2008 to 2009, a junior design engineer at XiO Photonics from 2009 to 2011, and now works as a software engineer at PhoeniX Software.
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Romano Hoofman
  • IMEC, Kapeldreef 75, 3001 Heverlee, Belgium
  • Further information
  • Romano Hoofman received his MSc degree in Molecular Sciences from Wageningen University in the Netherlands in 1995 and his PhD degree in Radiation Chemistry from the Technological University of Delft, The Netherlands, in 2000. He started his career in the industry where he worked as a principal scientist at Philips Research and later on at NXP Semiconductors. He covered many different R&D topics, ranging from CMOS integration, photovoltaic technology, thin-film batteries, and sensors (which form together the building blocks for IoT sensor nodes). Currently, he is a program director at IMEC, where he is responsible for the project management of Europractice and related services.
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

This tutorial aims to provide a general overview on the state-of-the-art of photonic integrated circuits (PICs) in the visible and short near-infrared (NIR) wavelength ranges, mostly focusing in silicon nitride (SiN) substrates, and a guide to the necessary steps in the design toward the fabrication of such PICs. The focus is put on bio- and life sciences, given the adequacy and, thus, a large number of applications in this field.

  • [1]

    K. Yamada, J. Liu, T. Baba, L. Vivien, D.-X. Xu, et al., Photonic Integration and Photonics-Electronics Convergence on Silicon Platform (Frontiers Media SA, Lausanne, Switzerland, 2015).

  • [2]

    R. Soref, IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).

  • [3]

    A. E.-J. Lim, J. Song, F. Qing, C. Li, X. Tu, et al., IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).

  • [4]

    P. Muñoz, G. Mico, L. A. Bru, D. Pastor, D. Pérez, et al., Sensors 17, 2088 (2017).

  • [5]

    R. G. Heideman, R. P. H. Kooyman, and J. Greve, Sens. Actuat. B: Chem. 10, 209–217 (1993).

  • [6]

    E. F. Schipper, A. M. Brugman, L. M. Lechuga, L. M. Lechuga, R. P. H. Kooyman, et al., Sens. Actuat. B: Chem. 40, 147–153 (1997).

  • [7]

    A. Fernández Gavela, D. Grajales Garca, J. C. Ramirez, and L. M. Lechuga, Sensors 16, 285 (2016).

  • [8]

    W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, et al., J. Lightwave Technol. 23, 401–412 (2005).

  • [9]

    R. Heideman, A. Leinse, W. Hoving, R. Dekker, D. H. Geuzebroek, et al., Proc. SPIE 7221, 7221-7221-15 (2009). doi: 10.1117/12.808409.

  • [10]

    C. Monat, P. Domachuk and B. J. Eggleton, Nat. Photonics 1, 106–114 (2007).

  • [11]

    M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl and C. T. Sullivan, MOEMS 5720 (2005), 109–118.

  • [12]

    A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, et al., IEEE J. Sel. Top. Quantum Electron. 12, 148–155 (2006).

  • [13]

    A. Schimpf, F. Canto, D. Bucci, A. Magnaldo, L. Couston, et al., In: ‘2011 2nd International Conference on Microfluidics and Integrated Optics Glass Sensor for In-line Microprobing of Nuclear Samples in Advancements in Nuclear Instrumentation Measurement Methods and Their Applications (ANIMMA) (IEEE, 2011), 1–7.

  • [14]

    I. D. Block, L. L. Chan and B. T. Cunningham, Sens. Actuat. B: Chem. 120, 187–193 (2006).

  • [15]

    A. H. Hosseinnia, A. H. Atabaki, A. A. Eftekhar and A. Adibi, Opt. Express 23, 30297 (2015).

  • [16]

    G. A. J. Besselink, R. G. Heideman, E. Schreuder, L. S. Wevers, F. Falke, et al. Biosens. Bioelectron. 7, 1–11 (2016).

  • [17]

    D. McCloskey and J. F. Donegan, Silicon nitride microdisks in the visible range in Transparent Optical Networks (ICTON), 2011 13th International Conference on (IEEE, 2011), 1–4.

  • [18]

    D. N. Urrios, F. F. Lupi, J. Montserrat, C. Domínguez, P. Pellegrino, et al., Optical characterisation of high Q silicon rich silicon nitride u-disks in the visible range in CLEO/Europe and EQEC 2011 Conference Digest (2011), paper CK2_4 The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), CK2_4.

  • [19]

    S. Romero-Garca, F. Merget, F. Zhong, H. Finkelstein and J. Witzens, Opt. Lett. 38, 2521–2523 (2013).

  • [20]

    S. Romero-Garcia, T. Klos, E. Klein, J. Leuermann, D. Geuzebroek, et al., Proc. SPIE, 101080 (2017).

  • [21]

    D. Martens, A. Z. Subramanian, S. Pathak, M. Vanslembrouck, P. Bienstman, et al., IEEE Photon. Technol. Lett. 27, 137–140 (2015).

  • [22]

    D. Geuzebroek, A. van Rees, E. Klein and K. Lawniczuk, Visible arrayed waveguide grating (400 nm–700 nm) for ultra-wide band (400–1700 nm) integrated spectrometer for spectral tissue sensing. in CLEO/Europe and EQEC 2017 Conference Digest (2017).

  • [23]

    G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, et al., Light Sci. Appl. 3, e203 (2014).

  • [24]

    X. Nie, E. Ryckeboer, G. Roelkens and R. Baets, Opt. Express 25, A409 (2017).

  • [25]

    C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky and L. E. Katz LE, Appl. Opt. 26, 2621 (1987).

  • [26]

    J. F. Bauters, M. J. Heck, D. John, D. Dai, M. C. Tien, et al., Opt. Express 19, 3163–3174 (2011).

  • [27]

    A. Leinse, R. G. Heideman, E. J. Klein, R. Dekker, C. G. H. Roeloffzen, et al., TriPleX™ platform technology for photonic integration: applications from UV through NIR to IR in Information Photonics (IP), 2011 ICO International Conference on (IEEE, 2011), 1–2.

  • [28]

    S. Romero-García, F. Merget, F. Zhong, H. Finkelstein and J. Witzens, Opt. Express 21, 14036 (2013).

  • [29]

    A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, et al., IEEE Photon. J. 5, 2202809 (2013).

  • [30]

    K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, et al., Opt. Express 22, 8856 (2014).

  • [31]

    D. Duval, J. Osmond, S. Dante, C. Domínguez and L. M. Lechuga, IEEE Photon. J. 5, 3700108–3700108 (2013).

  • [32]

    F. Ghasemi, A. A. Eftekhar, D. S. Gottfried, X. Song, R. D. Cummings, et al., Self-referenced silicon nitride array microring biosensor for toxin detection using glycans at visible wavelength in (2013), 85940A.

  • [33]

    C. A. Barrios, Anal. Bioanal. Chem. 403, 1467–1475 (2012).

  • [34]

    L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, et al., Silicon nitride photonic crystal nanocavities for biochip applications in Transparent Optical Networks (ICTON), 2011 13th International Conference on (IEEE, 2011), 1–4.

  • [35]

    P. V. Lambeck, Integrated optical sensors for the chemical domain. Meas. Sci. Technol. 17, R93–R116 (2006).

  • [36]

    F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, et al., Nanotechnology 14, 907–912 (2003).

  • [37]

    F. Ghasemi, A. A. Eftekhar, H. S. Mousavi, R. Abbaspour, H. Moradinejad, et al., Lab-on-chip Silicon Nitride Microring Sensor at Visible Wavelength Using Glycoprotein Receptors in CLEO: Applications and Technology (Optical Society of America, 2014), AW1L–3.

  • [38]

    J. Maldonado, A. B. González-Guerrero, C. Domínguez and L. M. Lechuga, Biosens. Bioelectron. 85, 310–316 (2016).

  • [39]

    M. Welkenhuysen, L. Hoffman, Z. Luo, A. De Proft, C. Van den Haute, et al., Sci. Rep. 6, 1–10 (2016).

  • [40]

    J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, et al., Opt. Express 23, 19596–19604 (2015).

  • [41]

    M. A. G. Porcel, F. Schepers, J. P. Epping, T. Hellwig and M. Hoekman, et al., Opt. Express 25, 1542 (2017).

  • [42]

    D. J. Moss, R. Morandotti, A. L. Gaeta and M. Lipson, Nat. Photonics 7, 597–607 (2013).

  • [43]

    S. Sabouri, M. Namdari, S. Hosseini and K. Jamshidi, 1-D array of silicon nitride grating couplers for visible light communications in Wireless for Space and Extreme Environments (WiSEE), 2016 IEEE International Conference on (IEEE, 2016), 73–76.

  • [44]

    M. Raval, A. Yaacobi, D. Coleman, N. M. Fahrenkopf, C. Baiocco, et al., Nanophotonic phased array for visible light image projection in Photonics Conference (IPC) (IEEE, 2016), 206–207.

  • [45]

    M. J. Heck, Nanophotonics 6, 93–107 (2016).

  • [46]

    P. Muellner, E. Melnika, G. Koppitsch, J. Kraft, F. Schrank, et al., Procedia Eng. 120, 578–581 (2015).

  • [47]

    E. Ryckeboer, J. Vierendeels, A. Lee, S. Werquin, P. Bienstman, et al., Lab Chip 13, 4392 (2013).

  • [48]

    D. Bischof, F. Kehl and M. Michler, Opt. Commun. 380, 273–279 (2016).

  • [49]

    X.-J. Liu, J.-J. Zhang, X.-W. Sun, Y.-B. Pan, L.-P. Huang, et al., Thin Solid Films 460, 72–77 (2004).

  • [50]

    R. G. Heideman, A. Melloni, M. Hoekman, A. Borreman, A. Leinse, et al., Proc. IEEE Benelux, 71–74 (2005).

  • [51]

    A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, et al., Photon. Res. 3, 47–59 (2015).

  • [52]

    T. Chalyan, L. Pasquardini, F. Falke, M. Zanetti, R. Guider, et al., Proc. SPIE 9899, 1–9 (2016).

  • [53]

    B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, et al., J. Opt. A Pure Appl. Opt. 8, S561–S566 (2006).

  • [54]

    T. Claes, W. Bogaerts and P. Bienstman, Opt. Lett. 36, 3320 (2011).

  • [55]

    D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck, et al., Opt. Express 19, 14130–14136 (2011).

  • [56]

    K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, et al., Adv. Opt. Technol. 2008, 1–6 (2008).

  • [57]

    F. Ghasemi, M. Chamanzar, E. S. Hosseini, A. A. Eftekhar, Q. Li, et al., Compact fluorescence sensor using on-chip silicon nitride microdisk in Photonics Conference (PHO) (IEEE, 2011), 151–152.

  • [58]

    M. Mahmud-Ul-Hasan, P. Neutens, R. Vos, L. Lagae, P. V. Dorpe, et al., ACS Photonics 4, 495–500 (2017).

  • [59]

    T. Korthorst, R. Stoffer and A. Bakker, Adv. Opt. Technol. 4, 147–155 (2015).

  • [60]

    Luceda. http://www.lucedaphotonics.com/.

  • [61]

    PhoeniX Software – Solutions for micro and nano technologies. http://www.phoenixbv.com/.

  • [62]

    Photon Design. https://www.photond.com/.

  • [63]

    RSoft Products. https://www.synopsys.com/optical-solutions/rsoft.html.

  • [64]

    Optiwave. https://optiwave.com/.

  • [65]

    Lumerical Inc. / Innovative Photonic Design Tools

  • [66]

    COMSOL Wave Optics Simulation Software. https://www.comsol.com/wave-optics-module.

  • [67]

    L. Bolla, ElectroMagnetic-Python version 0.1.2.

  • [68]

    Prototyping multi project wafer runs. www.europracticeic.com.

  • [69]

    PIX4life. http://www.pix4life.eu/.

  • [70]

    PIXAPP. http://www.pixapp.eu/.

  • [71]

    T. Claes, W. Bogaerts and P. Bienstman, Opt. Express 18, 22747 (2010).

  • [72]

    R. Dekker, E. Klein and D. Geuzebroek, Polarization maintaining single mode color combining using TriPleX™ based integrated optics for biophotonic applications in (IEEE, 2012), 286–287.

  • [73]

    L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, et al., Opt. Lett. 42, 803–806 (2017).

  • [74]

    M. J. R. Heck, J. F. Bauters, M. L. Davenport, K. K. Doylend, S. Jain, et al., IEEE J. Sel. Top. Quantum Electron. 19, 6100117–6100117 (2013).

  • [75]

    E. P. Haglund, S. Kumari, E. Haglund, J. Gustavsson, R. G. Baets, et al., IEEE J. Sel. Top. Quantum Electron. 23, 1–9 (2017).

  • [76]

    D. K. Schroder, Semiconductor Material and Device Characterization (Wiley, Hoboken, NJ, USA, 1998).

  • [77]

    S. Kumari, E. P. Haglund, J. S. Gustavsson, A. Larsson, G. Roelkens, et al., Design of an intra-cavity SiN grating for integrated 850nm VCSELs in Proceedings Symposium IEEE Photonics Society Benelux (2016), 263–266.

  • [78]

    LioniX International. http://www.lionix-international.com/.

  • [79]

    Imec R&D, nano electronics and digital technologies. https://www.imec-int.com/.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development.

Search