Cold atom interferometry for inertial sensing in the field

  • 1 Atomionics Pte. Ltd, ., 3791 Jalan Bukit Merah #03-01, Singapore, Singapore
Ravi KumarORCID iD: https://orcid.org/0000-0003-2834-8466
  • Corresponding author
  • Atomionics Pte. Ltd, ., 3791 Jalan Bukit Merah #03-01, Singapore, Singapore
  • orcid.org/0000-0003-2834-8466
  • Email
  • Further information
  • Ravi Kumar is a cofounder and Chief Technology Officer at Atomionics, Singapore. He received his PhD in Physics from the University College Cork, Ireland, in 2016. He worked at the Centre for Quantum Technologies at the National University of Singapore, Singapore, as a postdoctoral research fellow for a couple of years before starting Atomionics in 2018 in order to build atom interferometry–based inertial sensors for commercial applications.
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Ana RakonjacORCID iD: https://orcid.org/0000-0003-3341-4894
  • Atomionics Pte. Ltd, ., 3791 Jalan Bukit Merah #03-01, Singapore, Singapore
  • orcid.org/0000-0003-3341-4894
  • Email
  • Further information
  • Ana Rakonjac is a Senior Research Scientist at Atomionics in Singapore. She completed her PhD in physics at the University of Otago in New Zealand and then did postdoctoral research at Durham University in the UK. During this time, she worked on Bose–Einstein condensation, atom interferometry, and single atom trapping. In 2019, she joined Atomionics and is developing mobile cold atom interferometers for quantum sensing.
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Atom interferometry is one of the most promising technologies for high precision measurements. It has the potential to revolutionise many different sectors, such as navigation and positioning, resource exploration, geophysical studies, and fundamental physics. After decades of research in the field of cold atoms, the technology has reached a stage where commercialisation of cold atom interferometers has become possible. This article describes recent developments, challenges, and prospects for quantum sensors for inertial sensing based on cold atom interferometry techniques.

  • [1]

    L. Marton, J. A. Simpson, and J. A. Suddeth, “Electron beam interferometer,” Phys. Rev., vol. 90, p. 490, 1953, https://doi.org/10.1103/physrev.90.490.

    • Crossref
    • Export Citation
  • [2]

    H. Rauch, W. Treimer, and U. Bonse, “Test of a single crystal neutron interferometer,” Phys. Lett. A, vol. 47, p. 369, 1974, https://doi.org/10.1016/0375-9601(74)90132-7.

    • Crossref
    • Export Citation
  • [3]

    H. J. Metcalf and P. Van der Straten, Laser Cooling and Trapping. New York Springer: 1999.

  • [4]

    K. B. Davis, M.-O. Mewes, M. R. Andrews, et al., “Bose–Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett., vol. 75, p. 3969, 1995, https://doi.org/10.1103/physrevlett.75.3969.

    • Crossref
    • Export Citation
  • [5]

    M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science, vol. 269, p. 198, 1995, https://doi.org/10.1126/science.269.5221.198.

    • Crossref
    • Export Citation
  • [6]

    L. Hackermüller, S. Uttenthaler, K. Hornberger, et al., “Wave nature of biomolecules and fluorofullerenes,” Phys. Rev. Lett., vol. 91, 2003, Art no. 090408, https://doi.org/10.1103/physrevlett.91.090408.

    • PubMed
    • Export Citation
  • [7]

    S. Sala, A. Ariga, A. Ereditato, et al., “First demonstration of antimatter wave interferometry,” Sci. Adv., vol. 5, 2019, Art no. eaav7610, https://doi.org/10.1126/sciadv.aav7610.

    • PubMed
    • Export Citation
  • [8]

    B. P. Abbott, S. Jawahar, N. Lockerbie, and K. Tokmakov, “LIGO scientific collaboration and virgo collaboration,” Phys. Rev. Lett., vol. 116, 2016, Art no. 061102. https://doi.org/10.1103/PhysRevLett.116.061102.

  • [9]

    D. Huang, E. Swanson, C. Lin, et al., “Optical coherence tomography,” Science, vol. 254, p. 1178, 1991, https://doi.org/10.1126/science.1957169.

    • Crossref
    • PubMed
    • Export Citation
  • [10]

    H. C. Lefevre, R. A. Bergh, and H. J. Shaw, “All-fiber gyroscope with inertial-navigation short-term sensitivity,” Opt. Lett., vol. 7, pp. 454–456, 1982, https://doi.org/10.1364/ol.7.000454.

    • Crossref
    • PubMed
    • Export Citation
  • [11]

    C. Yu, W. Zhong, B. Estey, J. Kwan, R. H. Parker, and H. Müller, “Atom‐interferometry measurement of the fine structure constant,” Annalen der Physik, vol. 531, 2019, Art no. 1800346, https://doi.org/10.1002/andp.201800346.

  • [12]

    G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Determination of the Newtonian gravitational constant using atom interferometry,” Phys. Rev. Lett., vol. 100, 2008, Art no. 050801, https://doi.org/10.1103/physrevlett.100.050801.

    • PubMed
    • Export Citation
  • [13]

    J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science, vol. 315, no. 5805, p. 74, 2007, https://doi.org/10.1126/science.1135459.

    • Crossref
    • PubMed
    • Export Citation
  • [14]

    S. Dimopoulos, P. W. Graham, J. M. Hogan, and M. A. Kasevich, “Testing general relativity with atom interferometry,” Phys. Rev. Lett., vol. 98, 2007, Art no. 111102, https://doi.org/10.1103/physrevlett.98.111102.

    • PubMed
    • Export Citation
  • [15]

    S. Herrmann, H. Dittus, and C. Lämmerzahl, “Testing the equivalence principle with atomic interferometry,” Classical Quant. Grav., vol. 29, 2012, Art no. 184003, https://doi.org/10.1088/0264-9381/29/18/184003.

  • [16]

    M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett., vol. 67, p. 181, 1991, https://doi.org/10.1103/physrevlett.67.181.

    • Crossref
    • PubMed
    • Export Citation
  • [17]

    X. Wu, Z. Pagel, B. S. Malek, et al., “Gravity surveys using a mobile atom interferometer,” Sci. Adv., vol. 5, 2019, Art no. eaax0800, https://doi.org/10.1126/sciadv.aax0800.

    • PubMed
    • Export Citation
  • [18]

    G. Stern, B. Battelier, R. Geiger, et al., “Light-pulse atom interferometry in microgravity,” Eur. Phys. J. D, vol. 53, p. 353, 2009, https://doi.org/10.1140/epjd/e2009-00150-5.

    • Crossref
    • Export Citation
  • [19]

    Y. Bidel, N. Zahzam, A. Bresson, et al., “Absolute airborne gravimetry with a cold atom sensor,” J. Geod., vol. 94, p. 1, 2020, https://doi.org/10.1007/s00190-020-01350-2.

  • [20]

    Y. Bidel, N. Zahzam, C. Blanchard, et al., “Absolute marine gravimetry with matter-wave interferometry,” Nat. Commun., vol. 9, p. 1, 2018, https://doi.org/10.1038/s41467-018-03040-2.

  • [21]

    Becker, D., Lachmann, M. D., Seidel, S. T., et al., “Space-borne Bose–Einstein condensation for precision interferometry,” Nature 2018, 391, https://doi.org/10.1038/s41586-018-0605-1.

    • PubMed
    • Export Citation
  • [22]

    V. Ménoret, P. Vermeulen, N. Le Moigne, et al., “Gravity measurements below 10−9 g with a transportable absolute quantum gravimeter,” Sci. Rep., vol. 8, p. 1, 2018, https://doi.org/10.1038/s41598-018-30608-1.

  • [23]

    D. Savoie, M. Altorio, B. Fang, L. A. Sidorenkov, R. Geiger, and A. Landragin, “Interleaved atom interferometry for high-sensitivity inertial measurements,” Sci. Adv., vol. 4, 2018, Art no.eaau7948, https://doi.org/10.1126/sciadv.aau7948.

    • PubMed
    • Export Citation
  • [24]

    J. Lautier, L. Volodimer, T. Hardin, et al., “Hybridizing matter-wave and classical accelerometers,” Appl. Phys. Lett., vol. 105, 2014, Art no. 144102, https://doi.org/10.1063/1.4897358.

  • [25]

    M. Keil, O. Amit, S. Zhou, D. Groswasser, Y. Japha, and R. Folman, “Fifteen years of cold matter on the atom chip: promise, realizations, and prospects,” J. Mod. Opt., vol. 63, p. 1840, 2016, https://doi.org/10.1080/09500340.2016.1178820.

    • Crossref
    • PubMed
    • Export Citation
  • [26]

    B. Barrett, P. Cheiney, B. Battelier, F. Napolitano, and P. Bouyer, “Multidimensional atom optics and interferometry,” Phys. Rev. Lett., vol. 122, 2019, Art no. 043604, https://doi.org/10.1103/physrevlett.122.043604.

    • PubMed
    • Export Citation
  • [27]

    A. Mukherjee, A. Rakonjac, and R. Kumar, “Conceptualization, design and prospects of atom-interferometry based full tensor gravity gradiometer,” in Front. Opt. + Laser Sci. APS/DLS, OSA Tech. Dig. (Optical Soc. Am. 2019), Pap. FS3A.4 (OSA – The Optical Society), 2019, p. FS3A.4, https://doi.org/10.1364/fio.2019.fs3a.4.

  • [28]

    Y. Sun, Z. Meng, and F. Li, “Large airborne full tensor gradient data inversion based on a non-monotone gradient method,” Pure Appl. Geophys., vol. 175, p. 1065, 2018, https://doi.org/10.1007/s00024-017-1723-7.

    • Crossref
    • Export Citation
  • [29]

    M. Dransfield, A. Christensen, M. Rose, P. Stone, and P. Diorio, “FALCON test results from the Bathurst mining camp, “Explor. Geophys., vol. 32, no. 4, p. 243, 2001, https://doi.org/10.1071/eg01243.

    • Crossref
    • Export Citation
  • [30]

    J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A, vol. 65, 2002, Art no. 033608, https://doi.org/10.1103/physreva.65.033608.

  • [31]

    C. A. Affleck, A. Jircitano, “Passive gravity gradiometer navigation system,” in IEEE Symposium on Position Location and Navigation, Las Vegas, NV, USA. IEEE 1990, p. 60–66.

  • [32]

    J. McCubbine, F. C. Tontini, V. Stagpoole, E. Smith, and G. O’Brien, “Gsolve, a Python computer program with a graphical user interface to transform relative gravity survey measurements to absolute gravity values and gravity anomalies,” SoftwareX, vol. 7, p. 129, 2018, https://doi.org/10.1016/j.softx.2018.04.003.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development.

Search