Confirming Hypoderma tarandi (Diptera: Oestridae) human ophthalmomyiasis by larval DNA barcoding

Bjørn Rukke 1 , Symira Cholidis 2 , Arild Johnsen 3  and Preben Ottesen 1
  • 1 Department of Pest Control, Norwegian Institute of Public Health, Lovisenberggata 8, 0456, Oslo, Norway
  • 2 Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450, Oslo, Norway
  • 3 Natural History Museum, University of Oslo, Sars gate 1, 0562, Oslo, Norway

Abstract

DNA barcoding is a practical tool for species identification, when morphological classification of an organism is difficult. Herein we describe the utilisation of this technique in a case of ophthalmomyiasis interna. A 12-year-old boy was infested during a summer holiday in northern Norway, while visiting an area populated with reindeer. Following medical examination, a Diptera larva was surgically removed from the boy’s eye and tentatively identified from its morphological traits as Hypoderma tarandi (L.) (Diptera: Oestridae). Ultimately, DNA barcoding confirmed this impression. The larval cytochrome c oxidase subunit 1 (COI) DNA sequence was matched with both profiles of five adult H. tarandi from the same region where the boy was infested, and other established profiles of H. tarandi in the Barcode of Life Data Systems (BOLD) identification engine.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Anderson J.R. 2006. Oestrid myiasis in humans. In: (Eds. D.D. Coldwell, M.J.R. Hall and P.J. Scholl) The oestrid flies — biology, host-parasite relationships, impact and management. CABI Publishing, Oxford, UK, 201–209.

  • [2] Entezari S.M., Key L., Athari A., Ramin S. 2004. Ophthalmomyiasis interna posterior: Report of a case with lens subluxation and multiple retinal breaks. Annals of Ophthalmology, 36, 129–131.

  • [3] Ferrar P. 1987. A guide to the breeding habits and immature stages of Diptera Cyclorrhapha. E. J. Brill, Leiden, Netherlands, 907 pp.

  • [4] Francesconi F., Lupi O. 2012. Myiasis. Clinical Microbiology Reviews, 25, 79–105. DOI: 10.1128/CMR.00010-11. http://dx.doi.org/10.1128/CMR.00010-11

  • [5] Frézal L., Leblois R. 2008. Four years of DNA barcoding: Current advances and prospects. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 8, 727–736. DOI: 10.1016/j.meegid.2008.05.005. http://dx.doi.org/10.1016/j.meegid.2008.05.005

  • [6] Hajibabaei M., Janzen D.H., Burns J.M., Hallwachs W., Hebert P.D.N. 2006. DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America, 103, 968–971. DOI: 10.1073/pnas.0510466103. http://dx.doi.org/10.1073/pnas.0510466103

  • [7] Hebert P.D.N, Cywinska A., Ball S.L., deWaard J.R. 2003a. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B, 270, 313–321. DOI: 10.1098/rspb.2002.2218. http://dx.doi.org/10.1098/rspb.2002.2218

  • [8] Hebert P.D.N., Ratnasingham S., deWaard J.R. 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B (Supplement), 270, S96–99 (2003). http://dx.doi.org/10.1098/rsbl.2003.0025

  • [9] Kan B., Otranto D., Fossen K., Åsbakk K. 2012. Dermal swellings and ocular injury after exposure to reindeer. The New England Journal of Medicine, 367, 2456–2457. DOI: 10.1056/NEJMc1201434. http://dx.doi.org/10.1056/NEJMc1201434

  • [10] Kan B., Åsbakk K., Fossen K., Nilssen A., Panadero R., Otranto D. 2013. Reindeer warble fly-associated human myiasis, Scandinavia. Emerging Infectious Diseases, 19, 830–832. DOI: 10.3201/eid1905.130145. http://dx.doi.org/10.3201/eid1905.130145

  • [11] Kearney M.S., Nilssen A.C., Lyslo A., Syrdalen P., Dannevig, L. 1991. Ophthalmomyiasis caused by the reindeer warble fly larva. Journal of Clinical Pathology, 44, 276–284. http://dx.doi.org/10.1136/jcp.44.4.276

  • [12] Lagacé-Wiens P.R.S., Dookeran R., Skinner S., Leicht R., Colwell D.D., Galloway T. D. 2008. Human ophthalmomyiasis interna caused by Hypoderma tarandi, Northern Canada. Emerging Infectious Diseases, 14, 64–66. DOI: 10.3201/eid1401.07 0163. http://dx.doi.org/10.3201/eid1401.070163

  • [13] Otranto D., Colwell D.D., Traversa D., Stevens J.R. 2003. Species identification of Hypoderma affecting domestic and wild ruminants by morphological and molecular characterization. Medical and Veterinary Entomology, 17, 316–325. DOI: 10.1046/j.1365-2915.2003.00446.x. http://dx.doi.org/10.1046/j.1365-2915.2003.00446.x

  • [14] Otranto D., Traversa D., Colwell D.D., Guan G., Giangaspero A., Boulard C., Yin H. 2004. A third species of Hypoderma (Diptera: Oestridae) affecting cattle and yaks in China: molecular and morphological evidence. Journal of Parasitology, 90, 958–965. http://dx.doi.org/10.1645/GE-232R

  • [15] Ottesen P.S. 1993. Norwegian insect families and their species number. Norwegian Institute for Nature Research. Report No.: NINA Utredning 55, Trondheim, Norway, 40 pp.

  • [16] Syrdalen P., Nitter T., Mehl R. 1982. Ophthalmomyiasis interna posterior: Report of case caused by the reindeer warble fly larva and review of previous reported cases. The British Journal of Ophthalmology, 66, 589–593. http://dx.doi.org/10.1136/bjo.66.9.589

  • [17] Zumpt F. 1965. Myiasis in man and animals in The Old World: a textbook for physicians, veterinarians and zoologists. Butterworths, London, UK, 276 pp.

OPEN ACCESS

Journal + Issues

Search