Rheology Cyberinfrastructure for Integrated Research and Learning at ARC07

Technical University Berlin, Germany

March 20-21, 2007

H. Henning Winter 1
  • 1 , Amherst

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Winter HH, Mours M: The cyber infrastructure initiative for rheology. Rheol. Acta 45 (2006) 331-338.

  • [2] McLeish TCB, Larson RG: Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. .J Rheol. 42 (1998) 81-110.

  • [3] McLeish TCB, Allgaier J, Bick DK, Bishko G, Biswas P, Blackwell R, Blottiere B, Clarke N, Gibbs B, Groves DJ, Hakiki A, Hoenan RK, Johnson JM, Kant R, Read DJ, Young RN: Dynamics of entangled Hpolymers: theory, rheology, and neutron scattering. Macromolecules 32 (1999) 6734-6758.

  • [4] Milner ST. McLeish TCB: Parameter-free theory for stress relaxation in star polymer melts. Macromolecules 30 (1997) 2159-2166.

  • [5] Milner ST; McLeish, TCB: Reptation and contour-length fluctuations in melts of linear polymers. Phys. Rev. Lett. 81 (1998) 725-728.

  • [6] Blackwell RJ, Harlen OG, McLeish TCB:Theoretical linear and nonlinear rheology of symmetric tree-like polymer melts. Macromolecules 34 (2001) 2579-2596.

  • [7] Pryke A, Blackwell R J, McLeish TCB, Young RN: Synthesis, hydrogenation, and rheology of 1,2-polybutadiene star polymers. Macromolecules 35 (2002) 467-472.

  • [8] Larson RG: Combinatorial rheology of branched polymer melts. Macromolecules 34 (2001) 4556.

  • [9] Park SJ, Shanbhag S, Larson RG: A hierarchical algorithm for predicting the linear viscoelastic properties of polymer melts with long-chain branching. Rheol. Acta 44 (2005) 319-330.

  • [10] Wagner MH, Yamaguchi M, Takahashi M: Quantitative assessment of strain hardening of low-density polyethylene melts by the molecular stress function model. J. Rheol. 47 (2003) 779-793.

  • [11] Masubuchi Y, Ianniruberto G, Greco F, Marrucci G: Entanglement molecular weight and frequency response of sliplink networks. J. Chem. Phys. 119 (2003) 6925-6930.

  • [12] Masubuchi Y, Ianniruberto G, Greco F, Marrucci G: Molecular simulations of longtime behavior of entangled polymeric liquids by the primitive chain network model, modelling simulation. Mat. Sci. Eng. 12 (2004) 91-100.

  • [13] Masubuchi Y, Takimoto J, Koyama K, Ianniruberto G, Greco F, Marrucci G: Brownian Simulations of a Network of Reptating Primitive Chains. J. Chem. Phys. 115 (2001) 4387-4394.

  • [14] Nobile MR, Cocchini F: Evaluation of molecular weight distribution from dynamic moduli. Rheol. Acta 40 (2001) 111-119.

  • [15] Cocchini F, Nobile MR: Constrained inversion of rheological data to molecular weight distribution for polymer melts. Rheol. Acta 42 (2003) 232-242.

  • [16] Mours M, Winter HH: Time resolved rheometry. Rheol. Acta 33 (1994) 385-397.

  • [17] Baumgärtel M, Winter HH: Interrelation between continuous and discrete relaxation time spectra. J Non-Newtonian Fluid Mech 44 (1992) 15-36.

  • [18] Jackson JK, De Rosa ME, Winter HH: Molecular weight dependence of relaxation time spectra for the entanglement and flow behavior of monodisperse linear flexible polymers. Macromolecules 27 (1994) 2426-2431.

OPEN ACCESS

Journal + Issues

Search