Model-based generation of run-time data collection systems exploiting AutomationML

  • 1 CDL MINT, Wien, Austria
  • 2 Institute of Information Systems Engineering, Wien, Austria
  • 3 Faculty Mechanical Engineering, Magdeburg, Germany
  • 4 CDL SQI, Wien, Austria
Alexandra Mazak
  • Corresponding author
  • CDL MINT, Institute of Information Systems Engineering, TU Wien, Wien, Austria
  • Email
  • Further information
  • Dipl-Ing. Mag. Dr. techn. Alexandra Mazak is a senior researcher at the Business Informatics Group and in the Christian Doppler Laboratory for Model-Integrated Smart Production (CDL-MINT) at TU Wien. Her research interests comprise data integration, statistical modeling and forecast as well as model-driven systems and software engineering in the research field of Industry 4.0. She headed numerous national funded projects in this research field. For more information, please visit http://www.big.tuwien.ac.at/staff/amazak.
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Arndt Lüder
  • Faculty Mechanical Engineering, Otto-v.-Guericke University, Magdeburg, Germany
  • Email
  • Further information
  • Apl. Prof. Dr.-Ing. habil. Arndt Lüder attended the Otto-von-Guericke University at Magdeburg, Germany. He worked at Otto-von-Guericke-University Magdeburg and Martin-Luther-University Halle-Wittenberg in the field of formal methods for control system design. Since 2001 he has been working at the Center of Distributed Systems within the Faculty Mechanical Engineering at Otto-von-Guericke-University Magdeburg. Since 2006 he has been the head of this center. He was promoted to professor in 2007 on “Distributed Control Systems”. End of 2011 he was bestowed the title “Associate Professor” in the field of research and teaching “Factory Automation”. He is working actively within technical committees of VDMA, GMA and AutomationML related to topics of engineering of production systems.
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Sabine Wolny
  • CDL MINT, Institute of Information Systems Engineering, TU Wien, Wien, Austria
  • Email
  • Further information
  • Dipl.-Ing. Sabine Wolny is a PhD student at the Doctoral College Cyber-Physical Production Systems (CPPS) at TU Wien (http://dc-cpps.tuwien.ac.at). Her topic of interest is SysML-based modeling and execution of complex systems. Since 2013, she has been working in the Research Center of Building Physics and Sound Protection at TU Wien with a focus on project management and developing software solutions. For more information, please visit http://www.big.tuwien.ac.at/staff/swolny.
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Manuel Wimmer
  • CDL MINT, Institute of Information Systems Engineering, TU Wien, Wien, Austria
  • Email
  • Further information
  • Ass.Prof. Mag. Dr. Manuel Wimmer is an assistant professor at the Business Informatics Group of TU Wien. He heads the Christian Doppler Laboratory for Model-Integrated Smart Production (CDL-MINT). His research interests comprise foundations of model-driven engineering techniques as well as their application in domains such as tool interoperability, legacy tool modernization, model versioning and evolution, and industrial engineering. For more information, please visit http://www.big.tuwien.ac.at/staff/mwimmer.
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Dietmar Winkler
  • CDL SQI, Institute of Information Systems Engineering, TU Wien, Wien, Austria
  • Email
  • Further information
  • Dipl.-Ing. Dr. techn. Dietmar Winkler is a senior researcher at the Information and Software Engineering Group at TU Wien, Austria. He is currently working in the Christian Doppler Laboratory for “Security and Quality Improvement in the Production System Lifecycle” (CDL-SQI) at the faculty of Informatics at TU Wien. His research interests include software and systems engineering process and product improvement in multi-disciplinary engineering environments, quality management and quality assurance, as well as empirical evaluations in industrial settings. http://qse.ifs.tuwien.ac.at/~winkler.
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Konstantin Kirchheim
  • Faculty Mechanical Engineering, Otto-v.-Guericke University, Magdeburg, Germany
  • Email
  • Further information
  • Konstantin Kirchheim obtained his Bachelor degree in engineering and information sciences in 2017 at Otto-von-Guericke University and is currently studying within the related master program.
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Ronald Rosendahl
  • Faculty Mechanical Engineering, Otto-v.-Guericke University, Magdeburg, Germany
  • Email
  • Further information
  • Dipl.-Ing. Ronald Rosendahl attended the Otto-von-Guericke University Magdeburg and completed his diploma degree in computer visualistics. After working as a research assistant at IFAT, he is working as research assistant at IAF since 2012. His main field of interest are advanced engineering approaches and advanced (agent based) control systems.
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Hessamedin Bayanifar
  • Faculty Mechanical Engineering, Otto-v.-Guericke University, Magdeburg, Germany
  • Email
  • Further information
  • Dr.-Ing. M.Sc. Hessamedin Bayanifar completed his B.E. at Iran University of Science and Technology (IUST) in Industrial Engineering in 2011, and his MSc at University of Wollongong (UOW) in Manufacturing Engineering in 2014. In 2017 he completed his PhD at the OvGU Magdeburg on “Agent-based mechanism for smart distributed dependability and security control of Cyber-Physical Production Systems”.
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Stefan Biffl
  • Institute of Information Systems Engineering, TU Wien, Wien, Austria
  • Email
  • Further information
  • Ao. Univ.Prof. DI Mag. Dr.techn. Stefan Biffl was the head of the Christian Doppler Research Laboratory Software Engineering Integration for Flexible Automation Systems (CDL-Flex) at the faculty of Informatics at TU Wien. His research interests include product and process improvement for software-intensive systems and empirical evaluation in industrial environments.
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Production system operators need support for collecting and pre-processing data on production systems consisting of several system components, as foundation for optimization and defect detection. Traditional approaches based on hard-coded programming of such run-time data collection systems take time and effort, and require both domain and technology knowledge. In this article, we introduce the AML-RTDC approach, which combines the strengths of AutomationML (AML) data modeling and model-driven engineering, to reduce the manual effort for realizing the run-time data collection (RTDC) system. We evaluate the feasibility of the AML-RTDC approach with a demonstration case about a lab-sized production system and a use case based on real-world requirements.

  • 1.

    L. Berardinelli, S. Biffl, A. Lüder, E. Mätzler, T. Mayerhofer, M. Wimmer and S. Wolny. Cross-disciplinary engineering with AutomationML and SysML. Automatisierungstechnik, 64(4):253–269, 2016.

  • 2.

    J. Bezivin. On the unification power of models. Software & Systems Modeling, 4(2):171–188, 2005.

  • 3.

    S. Biffl, A. Lüder and D. Gerhard. Multi-Disciplinary Engineering for Cyber-Physical Production Systems – Data Models and Software Solutions for Handling Complex Engineering Projects. Springer, 2017.

  • 4.

    M. Brambilla, J. Cabot and M. Wimmer. Model-Driven Software Engineering in Practice. Morgan & Claypool, 2017.

  • 5.

    Bundesverband Informationswirtschaft, Telekommunikation und neue Medien e. V. (BITKOM), Verband Deutscher Maschinen- und Anlagenbau e. V. (VDMA), Zentralverband Elektrotechnik- und Elektronikindustrie e. V. (ZVEI). Umsetzungsstrategie Industrie 4.0. Ergebnisbericht der Plattform Industrie 4.0, 2015.

  • 6.

    P. S. Cowpertwait and A. V. Metcalfe. Introductory Time Series with R. Springer, 2009.

  • 7.

    DIN. DIN Spec 16592: Combining OPC Unified Architecture and Automation Markup Language. Beuth, 2016.

  • 8.

    T. Dunning and E. Friedmann. Practical Machine Learning: A New Look at Anomaly Detection. O’Reilly, 2014.

  • 9.

    T. Dunning and E. Friedmann. Time Series Databases: New Ways to Store and Access Data. O’Reilly, 2015.

  • 10.

    H. ElMaraghy. Changeable and Reconfigurable Manufacturing Systems. Springer, 2009.

  • 11.

    I. Hegny, M. Wenger and A. Zoitl. IEC 61499 based simulation framework for model-driven production systems development. In Proceedings of the IEEE Conference on Emerging Technologies and Factory Automation (ETFA), pages 1–8. IEEE, 2010.

  • 12.

    International Electrotechnical Commission. IEC 62424 – Representation of process control engineering – Requests in P&I diagrams and data exchange between P&ID tools and PCE-CAE tools. www.iec.ch, 2008.

  • 13.

    International Electrotechnical Commission. IEC 62714 – Engineering data exchange format for use in industrial automation systems engineering- AutomationML. www.iec.ch, 2014.

  • 14.

    International Organization for Standardization. ISO/PAS 17506:2012 – Industrial automation systems and integration – COLLADA digital asset schema specification for 3D visualization of industrial data. www.iso.org, 2012.

  • 15.

    H. Kagermann, W. Wahlster and J. Helbig. Recommendations for implementing the strategic initiative INDUSTRIE 4.0 – Securing the future of German manufacturing industry. Acatech, 2013.

  • 16.

    J. Kinghorst, O. Geramifard, M. Luo, H. Chan, K. Yong, J. Folmer, M. Zou and B. Vogel-Heuser. Hidden Markov model-based predictive maintenance in semiconductor manufacturing: A genetic algorithm approach. In Proceedings of the 13th IEEE Conference on Automation Science and Engineering (CASE), pages 1260–1267. IEEE, 2017.

  • 17.

    Konstantin Kirchheim. Konzeptionierung einer AutomationML OPC UA Serverstruktur für die Integration in agentenbasierte Steuerungssysteme. Bachelor thesis, Otto-von-Guericke University, 2017.

  • 18.

    A. Lüder, M. Schleipen, N. Schmidt, J. Pfrommer and R. Henßen. One step towards an Industry 4.0 component. In 13th IEEE Conference on Automation Science and Engineering (CASE), pages 1268–1273. IEEE, 2017.

  • 19.

    A. Lüder and N. Schmidt. AutomationML in a Nutshell. 2015.

  • 20.

    W. Mahnke, S.-H. Leitner and M. Damm. OPC Unified Architecture. Springer, 2011.

  • 21.

    T. Mayerhofer, M. Wimmer, L. Berardinelli and R. Drath. A model-driven engineering workbench for caex supporting language customization and evolution. IEEE Transactions on Industrial Informatics, PP(99):1–11, 2017.

  • 22.

    A. Mazak and M. Wimmer. Towards Liquid Models: An Evolutionary Modeling Approach. In Proceedings of the 18th IEEE Conference on Business Informatics (CBI), pages 104–112. IEEE, 2016.

  • 23.

    A. Mazak, M. Wimmer and P. Patsuk-Boesch. Reverse engineering of production processes based on Markov chains. In Proceedings of the 13th IEEE Conference on Automation Science and Engineering (CASE), pages 680–686. IEEE, 2017.

  • 24.

    D. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. Computer, 39(2):25–31, 2006.

  • 25.

    D. Schütz, C. Legat and B. Vogel-Heuser. MDE of manufacturing automation software – Integrating SysML and standard development tools. In Proceedings of the 12th IEEE International Conference on Industrial Informatics (INDIN), pages 267–273. IEEE, 2014.

  • 26.

    B. Vogel-Heuser, T. Bauernhansl and M. ten Hompel. Handbuch Industrie 4.0 – Produktion, Automatisierung und Logistik. Springer, 2015.

  • 27.

    V. Vyatkin. Software Engineering in Industrial Automation: State-of-the-Art. IEEE Transactions on Industrial Informatics, 9(3):1234–1249, 2013.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


Journal + Issues

AT – Automatisierungstechnik covers the entire field of automation technology. It presents the development of theoretical procedures and their possible applications. Topics include new discoveries about the development and application of methods. It presents the function, properties, and applications of tools and includes contributions from the worlds of research, academia, and industry.

Search