Molecular Basis for Interactions of the DnaK Chaperone with Substrates

Matthias P. Mayer, Stefan Rüdiger and Bernd Bukau


Hsp70 chaperones assist a large variety of protein folding processes in the cell by transient association with short peptide segments of proteins. The substrate binding and release cycle is driven by the switching between the low affinity ATP bound state and the high affinity ADP bound state of Hsp70. Considerable progress has been made recently by the identification of in vivo substrates for the Escherichia coli homolog, DnaK, and the molecular mechanisms which govern the DnaK-substrate interactions. Here we review the processes that generate DnaK substrates in vivo and the properties of these substrates, and we describe insights gained from structural and kinetic analysis of DnaK-substrate interaction.

Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.

Journal + Issues

Biological Chemistry keeps you up-to-date with the latest advances in the molecular life sciences. The journal publishes Research Articles, Short Communications, Reviews and Minireviews. Areas include: general biochemistry/pathobiochemistry, structural biology, molecular and cellular biology, genetics and epigenetics, virology, molecular medicine, plant molecular biology/biochemistry and novel experimental methodologies.