Trypsin Mutants for Structure-Based Drug Design: Expression, Refolding and Crystallisation

D. Rauh, S. Reyda, G. Klebe and M.T. Stubbs


New techniques in drug discovery are essential for the fast and efficient development of novel innovative drugs to deal with the challenges of the future. Structure determinations of various members of serine proteinases have provided a basis for computerbased drug design within this class of enzymes. In many proteins of interest, however, this course is blocked through a lack of suitable crystals. As a strategy for circumventing such problems, we have investigated the use of surrogate proteins for studying protein ligand interactions. To test the feasibility of this approach, we have chosen bovine trypsin as a scaffold to reconstruct the ligand binding site of factor Xa. The simple modular design of trypsin, its readiness to crystallise and straightforward handling lends itself to such drug design by proxy. The expression, folding, purification, crystallographic and kinetic characterisation of bovine trypsin forms with factor Xa phenotype are presented.

Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.

Journal + Issues

Biological Chemistry keeps you up-to-date with the latest advances in the molecular life sciences. The journal publishes Research Articles, Short Communications, Reviews and Minireviews. Areas include: general biochemistry/pathobiochemistry, structural biology, molecular and cellular biology, genetics and epigenetics, virology, molecular medicine, plant molecular biology/biochemistry and novel experimental methodologies.