Solvent Isotope Effect on the Reaction Catalysed by the Pyruvate Dehydrogenase Complex from Escherichia coli

X. Liu and H. Bisswanger

Abstract

The pyruvate dehydrogenase from Escherichia coli showed a primary kinetic isotope effect when its overall reaction or the partial reaction of the pyruvate dehydrogenase component were tested in deuterium oxide. The Michaelis constants for pyruvate were nearly unchanged, but the maximum velocities in water and deuterium oxide differed, their ratio being DV = 1.7 for the overall reaction and DV = 2.1 for the E1p reaction. The pH profile and, accordingly, the δpK1 and δpK2 values were shifted by 0.6 units to higher pL values. A linear proton inventory curve was obtained when varying the atom fractions of protons relative to deuterons from 100 to 0%. This is an indication for a single proton transfer. It is proposed that this relatively weak primary isotope effect may be caused by the protonation of the N1 nitrogen at the pyrimidine ring of the cofactor by an adjacent glutamate residue. The proton of its carboxylic group exchanges very fast with deuterons of the solvent.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Biological Chemistry keeps you up-to-date with the latest advances in the molecular life sciences. The journal publishes Research Articles, Short Communications, Reviews and Minireviews. Areas include: general biochemistry/pathobiochemistry, structural biology, molecular and cellular biology, genetics and epigenetics, virology, molecular medicine, plant molecular biology/biochemistry and novel experimental methodologies.

Search