Inter- and intra-molecular distances determined by EPR spectroscopy and site-directed spin labeling reveal protein-protein and protein-oligonucleotide interaction

Heinz-Jürgen Steinhoff 1.
  • 1. Fachbereich Physik, Universität Osnabrück, D-49069 Osnabrück, Germany

Abstract

Recent developments including pulse and multi-frequency techniques make the combination of site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy an attractive approach for the study of protein-protein or protein-oligonucleotide interaction. Analysis of the spin label side chain mobility, its solvent accessibility, the polarity of the spin label micro-environment and distances between spin label side chains allow the modeling of protein domains or protein-protein interaction sites and their conformational changes with a spatial resolution at the level of the backbone fold. Structural changes can be detected with millisecond time resolution. Inter- and intra-molecular distances are accessible in the range from approximately 0.5 to 8 nm by the combination of continuous wave and pulse EPR methods. Recent applications include the study of transmembrane substrate transport, membrane channel gating, gene regulation and signal transfer.

  • Altenbach, C., Oh, K. J., Trabanino, R. J., Hideg, K. and Hubbell, W. L. (2001). Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: experimental strategies and practical limitations. Biochemistry 40, 15471–15482.

    • Google Scholar
    • Export Citation
  • Altenbach, C., Yang, K., Farrens, D. L., Farahbakhsh, Z. T., Khorana, H. G. and Hubbell, W. L. (1996). Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin – a site-directed spin-labeling study. Biochemistry 35, 12470–12478.

    • Google Scholar
    • Export Citation
  • Berliner, L. J., Grunwald, J., Hankovszky, H. O. and Hideg, K. (1982). A novel reversible thiol-specific spin label: papain active site labeling and inhibition. Anal. Biochem. 119, 450–455.

    • Google Scholar
    • Export Citation
  • Borbat, P. P. and Freed, J. H. (1999). Multi-quantum ESR and distance measurements. Chem. Phys. Lett. 313, 145–154.

    • Google Scholar
    • Export Citation
  • Cai, K. W., Langen, R., Hubbell, W. L. and Khorana, H. G. (1997). Structure and function in rhodopsin – topology of the C-terminal polypeptide chain in relation to the cytoplasmic loops. Proc. Natl. Acad. Sci. USA 94, 14267–14272.

    • Google Scholar
    • Export Citation
  • Ciecierska-Tworek, Z., Van, S. P. and Griffith, O. H. (1973). Electron-electron dipolar splitting anisotropie of a dinitroxide oriented in a crystalline matrix. J. Mol. Struct. 16, 139–148.

    • Google Scholar
    • Export Citation
  • Columbus, L. and Hubbell, W. L. (2002). A new spin on protein dynamics. Trends Biochem. Sci. 27, 288–295.

  • Deparade, M. P., Gloggler, K. and Trommer, W. E. (1981). Isolation and properties of glyceraldehyde-3-phosphate dehydrogenase from a sturgeon from the Caspian Sea and its interaction with spin-labeled NAD+ derivatives. Biochim. Biophys. Acta 659, 422–433.

    • Google Scholar
    • Export Citation
  • Eaton, G. R., Eaton, S. S. and Berliner, L. J. (2000). Distance Measurements in Biological Systems (New York, USA: Kluwer).

  • Eaton, S. S., More, K. M., Sawant, B. M. and Eaton, G. R. (1983). Use of the EPR half-field transition to determine the interspin distance and the orientation of the interspin vector in systems with two unpaired electrons. J. Am. Chem. Soc. 105, 6560–6567.

    • Google Scholar
    • Export Citation
  • Essen, L. O., Siegert, R., Lehmannn, W. D. and Oesterhelt, D. (1998). Lipid patches in membrane protein oligomers – crystal structure of the bacteriorhodopsin-lipid complex. Proc. Natl. Acad. Sci. USA 95, 11673–11678.

    • Google Scholar
    • Export Citation
  • Fanucci, G. E., Lee, J. Y. and Cafiso, D. S. (2003). Spectroscopic evidence that osmolytes used in crystallization buffers inhibit a conformation change in a membrane protein. Biochemistry 42, 13106–13112.

    • Google Scholar
    • Export Citation
  • Farahbakhsh, Z., Hideg, K. and Hubbell, W. L. (1993). Photoactivated conformational changes in rhodopsin: a time resolved spin label study. Science 262, 1416–1420.

    • Google Scholar
    • Export Citation
  • Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L. and Khorana, H. G. (1996). Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770.

    • Google Scholar
    • Export Citation
  • Feix, J. B. and Klug, C. S. (1998). Site-directed spin labeling of membrane proteins and peptide-membrane interactions. In: Spin Labeling: The Next Millenium, L. J. Berliner, ed. (New York, USA: Plenum Press), pp. 251–281.

  • Gordeliy, V. I., Labahn, J., Moukhametzianov, R., Efremov, R., Granzin, J., Schlesinger, R., Büldt, G., Savopol, T. A., Scheidig, J. et al. (2002). Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419, 484–487.

    • Google Scholar
    • Export Citation
  • Hecht, B., Müller, G. and Hillen, W. (1993). Noninducible Tet repressor mutations map from the operator binding motif to the C-terminus. J. Bacteriol. 175, 1206–1210.

    • Google Scholar
    • Export Citation
  • Hinrichs, W., Kisker, C., Düvel, M., Müller, A., Tovar, K., Hillen, W. and Saenger, W. (1994). Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science 264, 418–420.

    • Google Scholar
    • Export Citation
  • Hubbell, W. L. and Altenbach, C. (1994). Investigation of structure and dynamics in membrane proteins using site-directed spin labeling. Curr. Opin. Struct. Biol. 4, 566–573.

    • Google Scholar
    • Export Citation
  • Hubbell, W. L., McHaourab, H. S., Altenbach, C. and Lietzow, M. A. (1996). Watching proteins move using site-directed spin labeling. Structure 4, 779–783.

    • Google Scholar
    • Export Citation
  • Hubbell, W. L., Gross, A., Langen, R. and Lietzow, M. A. (1998). Recent advances in site-directed spin labeling of proteins. Curr. Opin. Struct. Biol. 8, 649–656.

    • Google Scholar
    • Export Citation
  • Hubbell, W. L., Cafiso, D. S. and Altenbach, C. (2000). Identifying conformational changes with site-directed spin labeling. Nat. Struct. Biol. 7, 735–739.

    • Google Scholar
    • Export Citation
  • Hustedt, E. J. and Beth, A. H. (1999). Nitroxide spin-spin interactions: applications to protein structure and dynamics. Annu. Rev. Biophys. Biomol. Struct. 28, 129–153.

    • Google Scholar
    • Export Citation
  • Hustedt, E. J., Smirnov, A. I., Laub, C. F., Cobb, C. E. and Beth, A. H. (1997). Molecular distances from dipolar coupled spin-labels – the global analysis of multifrequency continuous wave electron paramagnetic resonance data. Biophys. J. 72, 1861–1877.

    • Google Scholar
    • Export Citation
  • Jager, J. and Pata, J. (1999). Getting a grip: polymerases and their substrate complexes. Curr. Opin. Struct. Biol. 9, 21–28.

    • Google Scholar
    • Export Citation
  • Jeschke, G. (2002a). Determination of the nanostructure of polymer materials by electron paramagnetic resonance spectroscopy. Macromol. Rapid Commun. 23, 227–246.

    • Google Scholar
    • Export Citation
  • Jeschke, G. (2002b). Distance measurements in the nanometer range by pulse EPR. Chem. Phys. Chem. 3, 927–932.

    • Google Scholar
    • Export Citation
  • Jeschke, G., Pannier, M., Godt, A. and Spiess, H. W. (2000). Dipolar spectroscopy and spin alignment in electron paramagnetic resonance. Chem. Phys. Lett. 331, 234–252.

    • Google Scholar
    • Export Citation
  • Jeschke, G., Koch, A., Jonas, U. and Godt, A. (2002). Direct conversion of EPR dipolar time evolution data to distance distributions. J. Magn. Reson. 155, 72–82.

    • Google Scholar
    • Export Citation
  • Jeschke, G., Bender, A., Paulsen, H., Zimmermann, H. and Godt, A. (2004a). Sensitivity enhancement in pulse EPR distance measurements. J. Magn. Reson. 169, 1–12.

    • Google Scholar
    • Export Citation
  • Jeschke, G., Wegener, C., Nietschke, M., Jung, H. and Steinhoff, H.-J. (2004b). Inter-residual distance determination by four-pulse DEER in an integral membrane protein: the Na+/proline transporter PutP of Escherichia coli. Biophys. J. 86, 2551–2557.

    • Google Scholar
    • Export Citation
  • Jung, H. (2001). Towards the molecular mechanism of Na+/solute symport in prokaryotes. Biochim. Biophys. Acta 1505, 131–143.

    • Google Scholar
    • Export Citation
  • Jung, H., Rübenhagen, R., Tebbe, S., Leifker, K., Tholema, N., Quick, M. and Schmid, R. (1998). Topology of the Na+/proline transporter of Escherichia coli. J. Biol. Chem. 273, 26400–26407.

    • Google Scholar
    • Export Citation
  • Jung, K., Voss, J., He, M., Hubbell, W. L. and Kaback, H. R. (1995). Engineering a metal binding site within a polytopic membrane protein, the lactose permease of Escherichia coli. Biochemistry 34, 6272–6277.

    • Google Scholar
    • Export Citation
  • Kensch, O., Connolly, B. A., Steinhoff, H. J., McGregor, A., Goody, R. S. and Restle, T. (2000a). HIV-1 reverse transcriptase-pseudoknot RNA aptamer interaction has a binding affinity in the low picomolar range coupled with high specificity. J. Biol. Chem. 275, 18271–18278.

    • Google Scholar
    • Export Citation
  • Kensch, O., Restle, T., Wöhrl, B. M., Goody, R. S. and Steinhoff, H.-J. (2000b). Temperature-dependent equilibrium between the open and close conformation of the p66 subunit of HIV-1 reverse transcriptase revealed by site-directed spin labelling. J. Mol. Biol. 301, 1029–1039.

    • Google Scholar
    • Export Citation
  • Kisker, C., Hinrichs, W., Tovar, K., Hillen, W. and Saenger, W. (1995). The complex formed between Tet repressor and tetracycline-Mg2+ reveals mechanism of antibiotic resistance. J. Mol. Biol. 247, 260–280.

    • Google Scholar
    • Export Citation
  • Klare, J., Bordignon, E., Engelhard, M. and Steinhoff, H.-J. (2004a). Sensory rhodopsin II and bacteriorhodopsin: light activated helix F movement. Photochem. Photobiol. Sci. 3, 543–547.

    • Google Scholar
    • Export Citation
  • Klare, J., Gordeliy, V. I., Labahn, J., Büldt, G., Steinhoff, H.-J. and Engelhard, M. (2004b). The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. FEBS Lett. 564, 219–224.

    • Google Scholar
    • Export Citation
  • Koteiche, H. A. and Mchaourab, H. S. (1999). Folding pattern of the α-crystallin domain in αA-crystallin determined by site-directed spin labeling. J. Mol. Biol. 294, 561–577.

    • Google Scholar
    • Export Citation
  • Kurshev, V. V., Raitsimring, A. M. and Tsvetkov, Y. D. (1989). Selection of dipolar interaction by the 2+1 pulse train ESE. J. Magn. Reson. 81, 441–454.

    • Google Scholar
    • Export Citation
  • Leigh, J. S. (1970). ESR rigid lattice line shape in a system of two interacting spins. J. Chem. Phys. 52, 2608–2612.

    • Google Scholar
    • Export Citation
  • Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P. and Lanyi, J. K. (1999). Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291, 899–911.

    • Google Scholar
    • Export Citation
  • Mchaourab, H. S. and Perozo, E. (2000). Determination of protein folds and conformational dynamics using spin-labeling EPR spectroscopy. In: Distance Measurements in Biological Systems by EPR, L. J. Berliner, S. S. Eaton and G. R. Eaton, eds. (New York, USA: Kluwer).

  • Müller, G., Hecht, B., Helbl, V., Hinrichs, W., Saenger, W. and Hillen, W. (1995). Characterization of non-inducible Tet repressor mutants suggests conformational changes necessary for induction. Nat. Struct. Biol. 2, 693–703.

    • Google Scholar
    • Export Citation
  • Orth, P., Schnappinger, D., Hillen, W., Saenger, W. and Hinrichs, W. (2000). Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat. Struct. Biol. 7, 215–219.

    • Google Scholar
    • Export Citation
  • Pannier, M., Veit, S., Godt, A., Jeschke, G. and Spiess, H. W. (2000). Dead-time free measurement of dipole-dipole interactions between electron spins. J. Magn. Reson. 142, 331–340.

    • Google Scholar
    • Export Citation
  • Perozo, E. and Rees, D. C. (2003). Structure and mechanism in prokaryotic mechanosensitive channels. Curr. Opin. Struct. Biol. 13, 432–442.

    • Google Scholar
    • Export Citation
  • Perozo, E., Cortes, D. M. and Cuello, L. G. (1998). Three-dimensional architecture of a K+ channel: implications for the mechanism of ion channel gating. Nat. Struct. Biol. 5, 459–469.

    • Google Scholar
    • Export Citation
  • Perozo, E., Cortes, D. M. and Cuello, L. G. (1999). Structural rearrangement underlying K+-channel activation gating. Science 285, 73–78.

    • Google Scholar
    • Export Citation
  • Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A. and Martinac, B. (2002). Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418, 942–948.

    • Google Scholar
    • Export Citation
  • Persson, M., Harbridge, J. R., Hammarstrom, P., Mitri, R., Martensson, L. G., Carlsson, U., Eaton, G. R. and Eaton, S. S. (2001). Comparison of electron paramagnetic resonance methods to determine distances between spin labels on human carbonic anhydrase II. Biophys. J. 80, 2886–2897.

    • Google Scholar
    • Export Citation
  • Quick, M. and Jung, H. (1998). A conserved aspartate residue, Asp187, is important for Na+-dependent proline binding and transport by the Na+/proline transporter of Escherichia coli. Biochemistry 37, 13800–13806.

    • Google Scholar
    • Export Citation
  • Quick, M., Stölting, S. and Jung, H. (1999). Role of conserved Arg40 and Arg117 in the Na+/proline transporter of Escherichia coli. Biochemistry 38, 13523–13529.

    • Google Scholar
    • Export Citation
  • Rabenstein, M. D. and Shin, Y. K. (1995). Determination of the distance between two spin labels attached to a macromolecule. Proc. Natl. Acad. Sci. USA 92, 8239–8243.

    • Google Scholar
    • Export Citation
  • Radzwill, N. (2001). Bestimmung der Strukturänderungen der lichtgetriebenen Protonenpumpe Bakteriorhodopsin mittels zweifacher Spinmarkierung und ESR-Spektroskopie. PhD Thesis, University of Bochum, Germany.

  • Radzwill, N., Gerwert, K. and Steinhoff, H.-J. (2001). Time-resolved detection of transient movement of helices F and G in doubly spin-labeled bacteriorhodopsin. Biophys. J. 80, 2856–2866.

    • Google Scholar
    • Export Citation
  • Schiemann, O., Piton, N., Mu, Y., Stock, G., Engels, J. W. and Prisner, T. F. (2004). A PELDOR-based nanometer distance ruler for oligonucleotides. J. Am. Chem. Soc. 126, 5722–5729.

    • Google Scholar
    • Export Citation
  • Skalka, A. and Goff, S. (1993). Reverse Transcriptase (Cold Spring Habor, USA: Cold Spring Habor Laboratory Press). Spudich, J. L. (1998). Variations on a molecular switch – transport and sensory signalling by archaeal rhodopsins. Mol. Microbiol. 28, 1051–1058.

    • Google Scholar
    • Export Citation
  • Spudich, J. L., Yang, C. S., Jung, K. H. and Spudich, E. N. (2000). Retinylidene proteins: structures and functions from archaea to humans. Annu. Rev. Cell Dev. Biol. 16, 365–392.

    • Google Scholar
    • Export Citation
  • Steinhoff, H.-J. (2002). Methods for study of protein dynamics and protein-protein interaction in protein-ubiquitination by electron paramagnetic resonance spectroscopy. Frontiers Biosci. 7, c97–110.

    • Google Scholar
    • Export Citation
  • Steinhoff, H.-J. and Suess, B. (2003). Molecular mechanism of gene regulation by site-directed spin labeling. Methods 29, 188–195.

    • Google Scholar
    • Export Citation
  • Steinhoff, H.-J., Dombrowsky, O., Karim, C. and Schneiderhahn, C. (1991). Two dimensional diffusion of small molecules on protein surfaces: an EPR study of the restricted translational diffusion of protein-bound spin labels. Eur. Biophys. J. 20, 293–303.

    • Google Scholar
    • Export Citation
  • Steinhoff, H. J., Mollaaghababa, R., Altenbach, C., Hideg, K., Krebs, M., Khorana, H. G. and Hubbell, W. L. (1994). Time-resolved detection of structural changes during the photocycle of spin-labeled bacteriorhodopsin. Science 266, 105–107.

    • Google Scholar
    • Export Citation
  • Steinhoff, H. J., Radzwill, N., Thevis, W., Lenz, V., Brandenburg, D., Antson, A., Dodson, G. and Wollmer, A. (1997). Determination of interspin distances between spin labels attached to insulin: comparison of electron paramagnetic resonance data with the X-ray structure. Biophys. J. 73, 3287–3298.

    • Google Scholar
    • Export Citation
  • Steinhoff, H. J., Müller, M., Beier, C. and Pfeiffer, M. (2000a). Molecular dynamics simulation and EPR spectroscopy of nitroxide side chains in bacteriorhodopsin. J. Mol. Liquids 84, 17–27.

    • Google Scholar
    • Export Citation
  • Steinhoff, H.-J., Savitsky, A., Wegener, C., Pfeiffer, M., Plato, M. and Möbius, K. (2000b). High-field EPR studies of the structure and conformational changes of site-directed spin labeled bacteriorhodopsin. Biochim. Biophys. Acta 1457, 253–262.

    • Google Scholar
    • Export Citation
  • Thorgeirsson, T. E., Xiao, W. Z., Brown, L. S., Needleman, R., Lanyi, J. K. and Shin, Y. K. (1997). Transient channel-opening in bacteriorhodopsin – an EPR study. J. Mol. Biol. 273, 951–957.

    • Google Scholar
    • Export Citation
  • Tiebel, B., Radzwill, N., Aung-Hilbrich, L. M., Helbl, V., Steinhoff, H. J. and Hillen, W. (1999). Domain motions accompanying Tet repressor induction defined by changes of interspin distances at selectively labeled sites. J. Mol. Biol. 290, 229–240.

    • Google Scholar
    • Export Citation
  • Voss, J., Hubbell, W. L. and Kaback, H. R. (1995a). Distance determination in proteins using designed metal ion binding sites and site-directed spin labeling – application to the lactose permease of Escherichia coli. Proc. Natl. Acad. Sci. USA 92, 12300–12303.

    • Google Scholar
    • Export Citation
  • Voss, J., Salwinski, L., Kaback, H. R. and Hubbell, W. L. (1995b). A method for distance determination in proteins using a designed metal ion binding site and site-directed spin labeling – evaluation with T4 lysozyme. Proc. Natl. Acad. Sci. USA 92, 12295–12299.

    • Google Scholar
    • Export Citation
  • Voss, J., Hubbell, W. L. and Kaback, H. R. (1998). Helix packing in the lactose permease determined by metal-nitroxide interaction. Biochemistry 37, 211–216.

    • Google Scholar
    • Export Citation
  • Wegener, A. A., Chizhov, I., Engelhard, M. and Steinhoff, H.-J. (2000a). Time-resolved detection of transient movement of helix F in spin-labelled pharaonis sensory rhodopsin II. J. Mol. Biol. 301, 881–891.

    • Google Scholar
    • Export Citation
  • Wegener, C., Tebbe, S., Steinhoff, H.-J. and Jung, H. R. (2000b). Spin labeling analysis of structure and dynamics of the Na+/proline transporter of Escherichia coli. Biochemistry 39, 4831–4837.

    • Google Scholar
    • Export Citation
  • Wegener, A. A., Klare, J. P., Engelhard, M. and Steinhoff, H.-J. (2001a). Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis. EMBO J. 20, 5312–5319.

    • Google Scholar
    • Export Citation
  • Wegener, C., Savitsky, A., Pfeiffer, M., Möbius, K. and Steinhoff, H.-J. (2001b). High-field EPR-detected shifts of magnetic tensor components of spin label side chains reveal protein conformational changes: the proton entrance channel of bacteriorhodopsin. Appl. Magnet. Res. 21, 441–452.

    • Google Scholar
    • Export Citation
  • Xiao, W., Brown, L. S., Needleman, R., Lanyi, J. K. and Shin, Y.-K. (2000). Light-induced rotation of a transmembrane a-helix in bacteriorhodopsin. J. Mol. Biol. 304, 715–721.

    • Google Scholar
    • Export Citation
  • Yan, B., Takahashi, T., Johnson, R. and Spudich, J. L. (1991). Identification of signaling states of a sensory receptor by modulation of lifetimes of stimulus-induced conformations: the case of sensory rhodopsin II. Biochemistry 30, 10686–10692.

    • Google Scholar
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Biological Chemistry keeps you up-to-date with the latest advances in the molecular life sciences. The journal publishes Research Articles, Short Communications, Reviews and Minireviews. Areas include: general biochemistry/pathobiochemistry, structural biology, molecular and cellular biology, genetics and epigenetics, virology, molecular medicine, plant molecular biology/biochemistry and novel experimental methodologies.

Search