Tapasin and other chaperones: models of the MHC class I loading complex

Cynthia Anne Wright 1. , Patrycja Kozik 2. , Martin Zacharias 3.  and Sebastian Springer 4.
  • 1. Biochemistry and Cell Biology, International University Bremen, D-28759 Bremen, Germany
  • 2. Biochemistry and Cell Biology, International University Bremen, D-28759 Bremen, Germany
  • 3. Bioinformatics and Computational Biology, International University Bremen, D-28759 Bremen, Germany
  • 4. Biochemistry and Cell Biology, International University Bremen, D-28759 Bremen, Germany

Abstract

MHC (major histocompatibility complex) class I molecules bind intracellular virus-derived peptides in the endoplasmic reticulum (ER) and present them at the cell surface to cytotoxic T lymphocytes. Peptide-free class I molecules at the cell surface, however, could lead to aberrant T cell killing. Therefore, cells ensure that class I molecules bind high-affinity ligand peptides in the ER, and restrict the export of empty class I molecules to the Golgi apparatus. For both of these safeguard mechanisms, the MHC class I loading complex (which consists of the peptide transporter TAP, the chaperones tapasin and calreticulin, and the protein disulfide isomerase ERp57) plays a central role. This article reviews the actions of accessory proteins in the biogenesis of class I molecules, specifically the functions of the loading complex in high-affinity peptide binding and localization of class I molecules, and the known connections between these two regulatory mechanisms. It introduces new models for the mode of action of tapasin, the role of the class I loading complex in peptide editing, and the intracellular localization of class I molecules.

  • Androlewicz, M., Anderson, K., and Cresswell, P. (1993). Evidence that transporters associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endoplasmic reticulum in an ATP-dependent manner. Proc. Natl. Acad. Sci. USA 90, 9130–9134.

    • Google Scholar
    • Export Citation
  • Baas, E. J., van Santen, H. M., Kleijmeer, M. J., Geuze, H. J., Peters, P. J., and Ploegh, H. L. (1992). Peptide-induced stabilization and intracellular localization of empty HLA class I complexes. J. Exp. Med. 176, 147–156.

    • Google Scholar
    • Export Citation
  • Balow, J. P., Weissman, J. D., and Kearse, K. P. (1995). Unique expression of major histocompatibility complex class I proteins in the absence of glucose trimming and calnexin association. J. Biol. Chem. 270, 29025–29029.

    • Google Scholar
    • Export Citation
  • Bangia, N., Lehner, P. J., Hughes, E. A., Surman, M., and Cresswell, P. (1999). The N-terminal region of tapasin is required to stabilize the MHC class I loading complex. Eur. J. Immunol. 29, 1858–1870.

    • Google Scholar
    • Export Citation
  • Barnden, M. J., Purcell, A. W., Gorman, J. J., and McCluskey, J. (2000). Tapasin-mediated retention and optimization of peptide ligands during the assembly of class I molecules. J. Immunol. 165, 322–330.

    • Google Scholar
    • Export Citation
  • Beissbarth, T., Sun, J., Kavathas, P. B., and Ortmann, B. (2000). Increased efficiency of folding and peptide loading of mutant MHC class I molecules. Eur. J. Immunol. 30, 1203–1213.

    • Google Scholar
    • Export Citation
  • Bouvier, M., Guo, H. C., Smith, K. J., and Wiley, D. C. (1998). Crystal structures of HLA-A*0201 complexed with antigenic peptides with either the amino- or carboxyl-terminal group substituted by a methyl group. Proteins 33, 97–106.

    • Google Scholar
    • Export Citation
  • Bouvier, M., and Wiley, D. C. (1994). Importance of peptide amino and carboxyl termini to the stability of MHC class I molecules. Science 265, 398–402.

    • Google Scholar
    • Export Citation
  • Bresnahan, P. A., Barber, L. D., and Brodsky, F. M. (1997). Localization of class I histocompatibility molecule assembly by subfractionation of the early secretory pathway. Hum. Immunol. 53, 129–139.

    • Google Scholar
    • Export Citation
  • Brocke, P., Garbi, N., Momburg, F., and Hammerling, G. J. (2002). HLA-DM, HLA-DO and tapasin: functional similarities and differences. Curr. Opin. Immunol. 14, 22–29.

    • Google Scholar
    • Export Citation
  • Busch, D. H., and Pamer, E. G. (1998). MHC class I/peptide stability: implications for immunodominance, in vitro proliferation, and diversity of responding CTL. J. Immunol. 160, 4441–4448.

    • Google Scholar
    • Export Citation
  • Cerundolo, V., Elliott, T., Elvin, J., Bastin, J., Rammensee, H.-G., and Townsend, A. (1991). The binding affinity and dissociation rates of peptides for class I histocompatibility complex molecules. Eur. J. Immunol. 21, 2069–2075.

    • Google Scholar
    • Export Citation
  • Chen, M., Stafford, W. F., Diedrich, G., Khan, A., and Bouvier, M. (2002). A characterization of the lumenal region of human tapasin reveals the presence of two structural domains. Biochemistry 41, 14539–14545.

    • Google Scholar
    • Export Citation
  • Chen, Y., Sidney, J., Southwood, S., Cox, A. L., Sakaguchi, K., Henderson, R. A., Apella, E., Hunt, D. F., Sette, A., and Engelhard, V. H. (1994). Naturally processed peptides longer than nine amino acid residues bind to the class I MHC molecule HLA-A2.1 with high affinity and with different conformations. J. Immunol. 152, 2874–2881.

    • Google Scholar
    • Export Citation
  • Chen, Z. W., Craiu, A., Shen, L., Kuroda, M. J., Iroku, U. C., Watkins, D. I., Voss, G., and Letvin, N. L. (2000). Simian immunodeficiency virus evades a dominant epitope-specific cytotoxic T lymphocyte response through a mutation resulting in the accelerated dissociation of viral peptide and MHC class I. J. Immunol. 164, 6474–6479.

    • Google Scholar
    • Export Citation
  • Collins, E. J., Garboczi, D. N., and Wiley, D. C. (1994). Three-dimensional structure of a peptide extending from one end of a class I MHC binding site. Nature 371, 626–629.

    • Google Scholar
    • Export Citation
  • Cresswell, P. (2000). Intracellular surveillance: controlling the assembly of MHC class I-peptide complexes. Traffic 1, 301–305.

    • Google Scholar
    • Export Citation
  • Croze, E. M., and Morre, D. J. (1981). Flow kinetics of mouse histocompatibility antigens. Proc. Natl. Acad. Sci. USA 78, 1547–1551.

    • Google Scholar
    • Export Citation
  • Dam, J., Guan, R., Natarajan, K., Dimasi, N., Chlewicki, L. K., Kranz, D. M., Schuck, P., Margulies, D. H., Mariuzza, R. A., Wang, J., and Tormo, J. (2003). Variable MHC class I engagement by Ly49 natural killer cell receptors demonstrated by the crystal structure of Ly49C bound to H-2K(b). Nat. Immunol. 4, 1213–1222.

    • Google Scholar
    • Export Citation
  • Danilczyk, U. G., Cohen-Doyle, M. F., and Williams, D. B. (2000). Functional relationship between calreticulin, calnexin, and the endoplasmic reticulum luminal domain of calnexin. J. Biol. Chem. 275, 13089–13097.

    • Google Scholar
    • Export Citation
  • Danilczyk, U. G., and Williams, D. B. (2001). The lectin chaperone calnexin utilizes polypeptide-based interactions to associate with many of its substrates in vivo. J. Biol. Chem. 276, 25532–25540.

    • Google Scholar
    • Export Citation
  • Dick, T. P., and Cresswell, P. (2002). Thiol oxidation and reduction in major histocompatibility complex class I-restricted antigen processing and presentation. Methods Enzymol. 348, 49–54.

    • Google Scholar
    • Export Citation
  • Dick, T. P., Bangia, N., Peaper, D. R., and Cresswell, P. (2002). Disulfide bond isomerization and the assembly of MHC class I-peptide complexes. Immunity 16, 87–98.

    • Google Scholar
    • Export Citation
  • Diedrich, G., Bangia, N., Pan, M., and Cresswell, P. (2001). A role for calnexin in the assembly of the MHC class I loading complex in the endoplasmic reticulum. J. Immunol. 166, 1703–1709.

    • Google Scholar
    • Export Citation
  • Ellgaard, L., and Helenius, A. (2001). ER quality control: towards an understanding at the molecular level. Curr. Opin. Cell Biol. 13, 431–437.

    • Google Scholar
    • Export Citation
  • Ellgaard, L., and Helenius, A. (2003). Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 4, 181–191.

    • Google Scholar
    • Export Citation
  • Elliott, T. (1997). How does TAP associate with MHC class I molecules? Immunol. Today 18, 375–379.

  • Elliott, T., Cerundolo, V., Elvin, J., and Townsend, A. (1991). Peptide-induced conformational change of the class I heavy chain. Nature 351, 402–406.

    • Google Scholar
    • Export Citation
  • Fahnestock, M. L., Johnson, J. L., Feldman, R. M., Tsomides, T. J., Mayer, J., Narhi, L. O., and Bjorkman, P. J. (1994). Effects of peptide length and composition on binding to an empty class I MHC heterodimer. Biochemistry 33, 8149–8158.

    • Google Scholar
    • Export Citation
  • Farmery, M. R., Allen, S., Allen, A. J., and Bulleid, N. J. (2000). The role of ERp57 in disulfide bond formation during the assembly of major histocompatibility complex class I in a synchronized semipermeabilized cell translation system. J. Biol. Chem. 275, 14933–14938.

    • Google Scholar
    • Export Citation
  • Frickel, E. M., Riek, R., Jelesarov, I., Helenius, A., Wuthrich, K., and Ellgaard, L. (2002). TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc. Natl. Acad. Sci. USA 99, 1954–1959.

    • Google Scholar
    • Export Citation
  • Gao, B., Adhikari, R., Howarth, M., Nakamura, K., Gold, M. C., Hill, A. B., Knee, R., Michalak, M., and Elliott, T. (2002). Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin. Immunity 16, 99–109.

    • Google Scholar
    • Export Citation
  • Gao, B., Williams, A., Sewell, A., and Elliott, T. (2004). Generation of a functional, soluble tapasin protein from an alternatively spliced mRNA. Genes Immun. 5, 101–108.

    • Google Scholar
    • Export Citation
  • Gao, G. F., Tormo, J., Gerth, U. C., Wyer, J. R., McMichael, A. J., Stuart, D. I., Bell, J. I., Jones, E. Y., and Jakobsen, B. K. (1997). Crystal structure of the complex between human CD8(a) and HLA-A2. Nature 387, 630–634.

    • Google Scholar
    • Export Citation
  • Garbi, N., Tiwari, N., Momburg, F., and Hammerling, G. J. (2003). A major role for tapasin as a stabilizer of the TAP peptide transporter and consequences for MHC class I expression. Eur. J. Immunol. 33, 264–273.

    • Google Scholar
    • Export Citation
  • Grandea 3rd, A. G., and Van Kaer, L. (2001). Tapasin: an ER chaperone that controls MHC class I assembly with peptide. Trends Immunol. 22, 194–199.

    • Google Scholar
    • Export Citation
  • Grandea 3rd, A. G., Androlewicz, M. J., Athwal, R. S., Geraghty, D. E., and Spies, T. (1995). Dependence of peptide binding by MHC class I molecules on their interaction with TAP. Science 270, 105–108.

    • Google Scholar
    • Export Citation
  • Grandea 3rd, A. G., Lehner, P. J., Cresswell, P., and Spies, T. (1997). Regulation of MHC class I heterodimer stability and interaction with TAP by tapasin. Immunogenetics 46, 477–483.

    • Google Scholar
    • Export Citation
  • Grandea 3rd, A. G., Golovina, T. N., Hamilton, S. E., Sriram, V., Spies, T., Brutkiewicz, R. R., Harty, J. T., Eisenlohr, L. C., and Van Kaer, L. (2000). Impaired assembly yet normal trafficking of MHC class I molecules in Tapasin mutant mice. Immunity 13, 213–222.

    • Google Scholar
    • Export Citation
  • Hammond, C., Braakman, I., and Helenius, A. (1994). Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. USA 91, 913–917.

    • Google Scholar
    • Export Citation
  • Hammond, C., and Helenius, A. (1994a). Folding of VSV G protein: sequential interaction with BiP and calnexin. Science 266, 456–458.

    • Google Scholar
    • Export Citation
  • Hammond, C., and Helenius, A. (1994b). Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus. J. Cell Biol. 126, 41–52.

    • Google Scholar
    • Export Citation
  • Harris, M. R., Lybarger, L., Myers, N. B., Hilbert, C., Solheim, J. C., Hansen, T. H., and Yu, Y. Y. (2001a). Interactions of HLA-B27 with the peptide loading complex as revealed by heavy chain mutations. Int. Immunol. 13, 1275–1282.

    • Google Scholar
    • Export Citation
  • Harris, M. R., Lybarger, L., Yu, Y. Y., Myers, N. B., and Hansen, T. H. (2001b). Association of ERp57 with mouse MHC class I molecules is tapasin dependent and mimics that of calreticulin and not calnexin. J. Immunol. 166, 6686–6692.

    • Google Scholar
    • Export Citation
  • Hayes, B. K., Esquivel, F., Bennink, J. R., Yewdell, J. W., and Varki, A. (1995). Structure of the N-linked oligosaccharides of MHC class I molecules from cells deficient in the antigenic peptide transporter. Implications for the site of peptide association. J. Immunol. 155, 3780–3787.

    • Google Scholar
    • Export Citation
  • Hebert, A. M., Strohmaier, J., Whitman, M. C., Chen, T., Gubina, E., Hill, D. M., Lewis, M. S., and Kozlowski, S. (2001). Kinetics and thermodynamics of beta 2-microglobulin binding to the α3 domain of major histocompatibility complex class I heavy chain. Biochemistry 40, 5233–5242.

    • Google Scholar
    • Export Citation
  • Hill, A., Takiguchi, M., and Mc Michael, A. (1993). Different rates of HLA class I molecule assembly which are determined by amino acid sequence in the α2 domain. Immunogenetics 37, 95–101.

    • Google Scholar
    • Export Citation
  • Hillig, R. C., Coulie, P. G., Stroobant, V., Saenger, W., Ziegler, A., and Hulsmeyer, M. (2001). High-resolution structure of HLA-A*0201 in complex with a tumour-specific antigenic peptide encoded by the MAGE-A4 gene. J. Mol. Biol. 310, 1167–1176.

    • Google Scholar
    • Export Citation
  • Horig, H., Young, A. C., Papadopoulos, N. J., DiLorenzo, T. P., and Nathenson, S. G. (1999). Binding of longer peptides to the H-2Kb heterodimer is restricted to peptides extended at their C terminus: refinement of the inherent MHC class I peptide binding criteria. J. Immunol. 163, 4434–4441.

    • Google Scholar
    • Export Citation
  • Hsu, V. W., Yuan, L. C., Nuchtern, J. G., Lippincott, S. J., Hämmerling, G. J., and Klausner, R. D. (1991). A recycling pathway between the endoplasmic reticulum and the Golgi apparatus for retention of unassembled MHC class I molecules. Nature 352, 441–444.

    • Google Scholar
    • Export Citation
  • Hughes, E. A., and Cresswell, P. (1998). The thiol oxidoreductase ERp57 is a component of the MHC class I peptide-loading complex. Curr. Biol. 8, 709–712.

    • Google Scholar
    • Export Citation
  • Jackson, M. R., Cohen-Doyle, M. F., Peterson, P. A., and Williams, D. B. (1994). Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science 263, 384–387.

    • Google Scholar
    • Export Citation
  • Jones, E. Y., Tormo, J., Reid, S. W., and Stuart, D. I. (1998). Recognition surfaces of MHC class I. Immunol. Rev. 163, 121–128.

    • Google Scholar
    • Export Citation
  • Khan, A. R., Baker, B. M., Ghosh, P., Biddison, W. E., and Wiley, D. C. (2000). The structure and stability of an HLA-A*0201/octameric tax peptide complex with an empty conserved peptide-N-terminal binding site. J. Immunol. 164, 6398–6405.

    • Google Scholar
    • Export Citation
  • Kleijmeer, M., Kelly, A., Geuze, H., Slot, J., Townsend, A., and Trowsdale, J. (1992). Location of MHC-encoded transporters in the endoplasmic reticulum and cis-Golgi. Nature 357, 342–344.

    • Google Scholar
    • Export Citation
  • Kulig, K., Nandi, D., Bacik, I., Monaco, J. J., and Vukmanovic, S. (1998). Physical and functional association of the major histocompatibility complex class I heavy chain α3 domain with the transporter associated with antigen processing. J. Exp. Med. 187, 865–874.

    • Google Scholar
    • Export Citation
  • Latron, F., Pazmany, L., Morrison, J., Moots, R., Saper, M. A., McMichael, A., and Strominger, J. L. (1992). A critical role for conserved residues in the cleft of HLA-A2 in presentation of a nonapeptide to T cells. Science 257, 964–967.

    • Google Scholar
    • Export Citation
  • Leach, M. R., Cohen-Doyle, M. F., Thomas, D. Y., and Williams, D. B. (2002). Localization of the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. J. Biol. Chem. 277, 29686–29697.

    • Google Scholar
    • Export Citation
  • Leach, M. R., and Williams, D. B. (2004). Lectin-deficient calnexin is capable of binding class I histocompatibility molecules in vivo and preventing their degradation. J. Biol. Chem. 279, 9072–9079.

    • Google Scholar
    • Export Citation
  • Lee, N., and Geraghty, D. E. (2003). HLA-F surface expression on B cell and monocyte cell lines is partially independent from tapasin and completely independent from TAP. J. Immunol. 171, 5264–5271.

    • Google Scholar
    • Export Citation
  • Lehner, P. J., Surman, M. J., and Cresswell, P. (1998). Soluble tapasin restores MHC class I expression and function in the tapasin-negative cell line.220. Immunity 8, 221–231.

    • Google Scholar
    • Export Citation
  • Lewis, J. W., and Elliott, T. (1998). Evidence for successive peptide binding and quality control stages during MHC class I assembly. Curr. Biol. 8, 717–720.

    • Google Scholar
    • Export Citation
  • Lewis, J. W., Neisig, A., Neefjes, J., and Elliott, T. (1996). Point mutations in the α2 domain of HLA-A2.1 define a functionally relevant interaction with TAP. Curr. Biol. 6, 873–883.

    • Google Scholar
    • Export Citation
  • Lewis, J. W., Sewell, A., Price, D., and Elliott, T. (1998). HLA-A*0201 presents TAP-dependent peptide epitopes to cytotoxic T lymphocytes in the absence of tapasin. Eur. J. Immunol. 28, 3214–3220.

    • Google Scholar
    • Export Citation
  • Lindahl, K. F., Byers, D. E., Dabhi, V. M., Hovik, R., Jones, E. P., Smith, G. P., Wang, C. R., Xiao, H., and Yoshino, M. (1997). H2-M3, a full-service class Ib histocompatibility antigen. Annu. Rev. Immunol. 15, 851–879.

    • Google Scholar
    • Export Citation
  • Lindquist, J. A., Hammerling, G. J., and Trowsdale, J. (2001). ER60/ERp57 forms disulfide-bonded intermediates with MHC class I heavy chain. FASEB J. 15, 1448–1450.

    • Google Scholar
    • Export Citation
  • Machold, R. P., Andree, S., Van Kaer, L., Ljunggren, H. G., and Ploegh, H. L. (1995). Peptide influences the folding and intracellular transport of free major histocompatibility complex class I heavy chains. J. Exp. Med. 181, 1111–1122.

    • Google Scholar
    • Export Citation
  • Madden, D. R. (1995). The three-dimensional structure of peptide-MHC complexes. Annu. Rev. Immunol. 13, 587–622.

    • Google Scholar
    • Export Citation
  • Madden, D. R., Gorga, J. C., Strominger, J. L., and Wiley, D. C. (1992). The three-dimensional structure of HLA-B27 at 2.1 Å resolution suggests a general mechanism for tight peptide binding to MHC. Cell 70, 1035–1048.

    • Google Scholar
    • Export Citation
  • Mancino, L., Rizvi, S. M., Lapinski, P. E., and Raghavan, M. (2002). Calreticulin recognizes misfolded HLA-A2 heavy chains. Proc. Natl. Acad. Sci. USA 99, 5931–5936.

    • Google Scholar
    • Export Citation
  • Marguet, D., Spiliotis, E. T., Pentcheva, T., Lebowitz, M., Schneck, J., and Edidin, M. (1999). Lateral diffusion of GFP-tagged H2Ld molecules and of GFP-TAP1 reports on the assembly and retention of these molecules in the endoplasmic reticulum. Immunity 11, 231–240.

    • Google Scholar
    • Export Citation
  • Matlack, K. E., Mothes, W., and Rapoport, T. A. (1998). Protein translocation: tunnel vision. Cell 92, 381–390.

    • Google Scholar
    • Export Citation
  • Matsumura, M., Fremont, D. H., Peterson, P. A., and Wilson, I. A. (1992). Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science 257, 927–934.

    • Google Scholar
    • Export Citation
  • Mayer, W. E., and Klein, J. (2001). Is tapasin a modified MHC class I molecule? Immunogenetics 53, 719–723.

    • Google Scholar
    • Export Citation
  • Meyer, T. H., van Endert, P. M., Uebel, S., Ehring, B., and Tampé , R. (1994). Functional expression and purification of the ABC transporter complex associated with antigen processing (TAP) in insect cells. FEBS Lett. 351, 443–447.

    • Google Scholar
    • Export Citation
  • Molinari, M., and Helenius, A. (1999). Glycoproteins form mixed disulphides with oxidoreductases during folding in living cells. Nature 402, 90–93.

    • Google Scholar
    • Export Citation
  • Molinari, M., and Helenius, A. (2000). Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 288, 331–333.

    • Google Scholar
    • Export Citation
  • Molinari, M., Eriksson, K. K., Calanca, V., Galli, C., Cresswell, P., Michalak, M., and Helenius, A. (2004). Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol. Cell 13, 125–135.

    • Google Scholar
    • Export Citation
  • Momburg, F., and Tan, P. (2002). Tapasin-the keystone of the loading complex optimizing peptide binding by MHC class I molecules in the endoplasmic reticulum. Mol. Immunol. 39, 217–233.

    • Google Scholar
    • Export Citation
  • Mossessova, E., Bickford, L. C., and Goldberg, J. (2003). SNARE selectivity of the COPII coat. Cell 114, 483–495.

    • Google Scholar
    • Export Citation
  • Myers, N. B., Harris, M. R., Connolly, J. M., Lybarger, L., Yu, Y. Y., and Hansen, T. H. (2000). Kb, Kd, and Ld molecules share common tapasin dependencies as determined using a novel epitope tag. J. Immunol. 165, 5656–5663.

    • Google Scholar
    • Export Citation
  • Natarajan, K., Dimasi, N., Wang, J., Margulies, D. H., Mariuzza, R. A., and Tormo, J. (2002). MHC class I recognition by Ly49 natural killer cell receptors-Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Mol. Immunol. 38, 1023–1027.

    • Google Scholar
    • Export Citation
  • Neefjes, J., Momburg, F., and Hämmerling, G. (1993). Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science 261, 769–771.

    • Google Scholar
    • Export Citation
  • Neisig, A., Wubbolts, R., Zang, X., Melief, C., and Neefjes, J. (1996). Allele-specific differences in the interaction of MHC class I molecules with transporters associated with antigen processing. J. Immunol. 156, 3196–3206.

    • Google Scholar
    • Export Citation
  • Nossner, E., and Parham, P. (1995). Species-specific differences in chaperone interaction of human and mouse major histocompatibility complex class I molecules. J. Exp. Med. 181, 327–337.

    • Google Scholar
    • Export Citation
  • Oliver, J. D., Roderick, H. L., Llewellyn, D. H., and High, S. (1999). ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol. Biol. Cell 10, 2573–2582.

    • Google Scholar
    • Export Citation
  • Ortmann, B., Androlewicz, M. J., and Cresswell, P. (1994). MHC class I/β2-microglobulin complexes associate with TAP transporters before peptide binding. Nature 368, 864–867.

    • Google Scholar
    • Export Citation
  • Ortmann, B., Copeman, J., Lehner, P. J., Sadasivan, B., Herberg, J. A., Grandea, A. G., Riddell, S. R., Tampe, R., Spies, T., Trowsdale, J., and Cresswell, P. (1997). A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. Science 277, 1306–1309.

    • Google Scholar
    • Export Citation
  • Paquet, M. E., and Williams, D. B. (2002). Mutant MHC class I molecules define interactions between components of the peptide-loading complex. Int. Immunol. 14, 347–358.

    • Google Scholar
    • Export Citation
  • Park, B., and Ahn, K. (2003). An essential function of Tapasin in quality control of HLA-G molecules. J. Biol. Chem. 278, 14337–14345.

    • Google Scholar
    • Export Citation
  • Park, B., Kim, Y., Shin, J., Lee, S., Cho, K., Fruh, K., and Ahn, K. (2004). Human cytomegalovirus inhibits tapasin-dependent peptide loading and optimization of the MHC class I peptide cargo for immune evasion. Immunity 20, 71–85.

    • Google Scholar
    • Export Citation
  • Park, B., Lee, S., Kim, E., and Ahn, K. (2003). A single polymorphic residue within the peptide-binding cleft of MHC class I molecules determines spectrum of tapasin dependence. J. Immunol. 170, 961–968.

    • Google Scholar
    • Export Citation
  • Parodi, A. J. (2000). Protein glucosylation and its role in protein folding. Annu. Rev. Biochem. 69, 69–93.

    • Google Scholar
    • Export Citation
  • Patil, A. R., Thomas, C. J., and Surolia, A. (2000). Kinetics and the mechanism of interaction of the endoplasmic reticulum chaperone, calreticulin, with monoglucosylated (Glc1Man9GlcNAc2) substrate. J. Biol. Chem. 275, 24348–24356.

    • Google Scholar
    • Export Citation
  • Paulsson, K. M., Anderson, P. O., Chen, S., Sjogren, H. O., Ljunggren, H. G., Wang, P., and Li, S. (2001a). Assembly of tapasin-associated MHC class I in the absence of the transporter associated with antigen processing (TAP). Int. Immunol. 13, 23–29.

    • Google Scholar
    • Export Citation
  • Paulsson, K. M., Wang, P., Anderson, P. O., Chen, S., Pettersson, R. F., and Li, S. (2001b). Distinct differences in association of MHC class I with endoplasmic reticulum proteins in wild-type, and β2-microglobulin- and TAP-deficient cell lines. Int. Immunol. 13, 1063–1073.

    • Google Scholar
    • Export Citation
  • Paulsson, K. M., Kleijmeer, M. J., Griffith, J., Jevon, M., Chen, S., Anderson, P. O., Sjogren, H. O., Li, S., and Wang, P. (2002). Association of tapasin and COPI provides a mechanism for the retrograde transport of major histocompatibility complex (MHC) class I molecules from the Golgi complex to the endoplasmic reticulum. J. Biol. Chem. 277, 18266–18271.

    • Google Scholar
    • Export Citation
  • Peace-Brewer, A. L., Tussey, L. G., Matsui, M., Li, G., Quinn, D. G., and Frelinger, J. A. (1996). A point mutation in HLAA*0201 results in failure to bind the TAP complex and to present virus-derived peptides to CTL. Immunity 4, 505–514.

    • Google Scholar
    • Export Citation
  • Peh, C. A., Burrows, S. R., Barnden, M., Khanna, R., Cresswell, P., Moss, D. J., and McCluskey, J. (1998). HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. Immunity 8, 531–542.

    • Google Scholar
    • Export Citation
  • Petrone, P. M., and Garcia, A. E. (2004). MHC-peptide binding is assisted by bound water molecules. J. Mol. Biol. 338, 419–435.

    • Google Scholar
    • Export Citation
  • Prilliman, K. R., Jackson, K. W., Lindsey, M., Wang, J., Crawford, D., and Hildebrand, W. H. (1999). HLA-B15 peptide ligands are preferentially anchored at their C termini. J. Immunol. 162, 7277–7284.

    • Google Scholar
    • Export Citation
  • Purcell, A. W., Gorman, J. J., Garcia-Peydro, M., Paradela, A., Burrows, S. R., Talbo, G. H., Laham, N., Peh, C. A., Reynolds, E. C., Lopez De Castro, J. A., and McCluskey, J. (2001). Quantitative and qualitative influences of tapasin on the class I peptide repertoire. J. Immunol. 166, 1016–1027.

    • Google Scholar
    • Export Citation
  • Radcliffe, C. M., Diedrich, G., Harvey, D. J., Dwek, R. A., Cresswell, P., and Rudd, P. M. (2002). Identification of specific glycoforms of major histocompatibility complex class I heavy chains suggests that class I peptide loading is an adaptation of the quality control pathway involving calreticulin and ERp57. J. Biol. Chem. 277, 46415–46423.

    • Google Scholar
    • Export Citation
  • Raghuraman, G., Lapinski, P. E., and Raghavan, M. (2002). Tapasin interacts with the membrane-spanning domains of both TAP subunits and enhances the structural stability of TAP1 × TAP2 Complexes. J. Biol. Chem. 277, 41786–41794.

    • Google Scholar
    • Export Citation
  • Raposo, G., van Santen, H. M., Leijendekker, R., Geuze, H. J., and Ploegh, H. L. (1995). Misfolded major histocompatibility complex class I molecules accumulate in an expanded ER-Golgi intermediate compartment. J. Cell Biol. 131, 1403–1419.

    • Google Scholar
    • Export Citation
  • Reits, E. A., Vos, J. C., Gromme, M., and Neefjes, J. (2000). The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404, 774–778.

    • Google Scholar
    • Export Citation
  • Rock, K. L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A. L. (1994). Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771.

    • Google Scholar
    • Export Citation
  • Rock, K. L., York, I. A., and Goldberg, A. L. (2004). Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat. Immunol. 5, 670–677.

    • Google Scholar
    • Export Citation
  • Russ, G., Esquivel, F., Yewdell, J. W., Cresswell, P., Spies, T., and Bennink, J. R. (1995). Assembly, intracellular localization, and nucleotide binding properties of the human peptide transporters TAP1 and TAP2 expressed by recombinant vaccinia viruses. J. Biol. Chem. 270, 21312–21318.

    • Google Scholar
    • Export Citation
  • Sadasivan, B., Lehner, P. J., Ortmann, B., Spies, T., and Cresswell, P. (1996). Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5, 103–114.

    • Google Scholar
    • Export Citation
  • Sadasivan, B. K., Cariappa, A., Waneck, G. L., and Cresswell, P. (1995). Assembly, peptide loading, and transport of MHC class I molecules in a calnexin-negative cell line. Cold Spring Harb. Symp. Quant. Biol. 60, 267–275.

    • Google Scholar
    • Export Citation
  • Saric, T., Chang, S. C., Hattori, A., York, I. A., Markant, S., Rock, K. L., Tsujimoto, M., and Goldberg, A. L. (2002). An IFN-γ-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat. Immunol. 3, 1169–1176.

    • Google Scholar
    • Export Citation
  • Schoenhals, G. J., Krishna, R. M., Grandea, A. G., 3rd, Spies, T., Peterson, P. A., Yang, Y., and Fruh, K. (1999). Retention of empty MHC class I molecules by tapasin is essential to reconstitute antigen presentation in invertebrate cells. EMBO J. 18, 743–753.

    • Google Scholar
    • Export Citation
  • Serwold, T., Gonzalez, F., Kim, J., Jacob, R., and Shastri, N. (2002). ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419, 480–483.

    • Google Scholar
    • Export Citation
  • Sette, A., Vitiello, A., Reherman, B., Fowler, P., Nayersina, R., Kast, W. M., Melief, C. J., Oseroff, C., Yuan, L., Ruppert, J., and et al. (1994). The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J. Immunol. 153, 5586–5592.

    • Google Scholar
    • Export Citation
  • Sijts, A. J., and Pamer, E. G. (1997). Enhanced intracellular dissociation of major histocompatibility complex class I-associated peptides: a mechanism for optimizing the spectrum of cell surface-presented cytotoxic T lymphocyte epitopes. J. Exp. Med. 185, 1403–1411.

    • Google Scholar
    • Export Citation
  • Smith, J. D., Solheim, J. C., Carreno, B. M., and Hansen, T. H. (1995). Characterization of class I MHC folding intermediates and their disparate interactions with peptide and β2-microglobulin. Mol. Immunol. 32, 531–540.

    • Google Scholar
    • Export Citation
  • Snyder, H. L., Yewdell, J. W., and Bennink, J. R. (1994). Trimming of antigenic peptides in an early secretory compartment. J. Exp. Med. 180, 2389–2394.

    • Google Scholar
    • Export Citation
  • Spies, T., Cerundolo, V., Colonna, M., Cresswell, P., Townsend, A., and DeMars, R. (1992). Presentation of viral antigen by MHC class I molecules is dependent on a putative peptide transporter heterodimer. Nature 355, 644–646.

    • Google Scholar
    • Export Citation
  • Spiliotis, E. T., Manley, H., Osorio, M., Zuniga, M. C., and Edidin, M. (2000). Selective export of MHC class I molecules from the ER after their dissociation from TAP. Immunity 13, 841–851.

    • Google Scholar
    • Export Citation
  • Springer, S., Döring, K., Skipper, J. C., Townsend, A. R., and Cerundolo, V. (1998). Fast association rates suggest a conformational change in the MHC class I molecule H-2Db upon peptide binding. Biochemistry 37, 3001–3012.

    • Google Scholar
    • Export Citation
  • Springer, S., Spang, A., and Schekman, R. (1999). A primer on vesicle budding. Cell 97, 145–148.

  • Sugita, M., and Brenner, M. B. (1994). An unstable β2-microglobulin: major histocompatibility complex class I heavy chain intermediate dissociates from calnexin and then is stabilized by binding peptide. J. Exp. Med. 180, 2163–2171.

    • Google Scholar
    • Export Citation
  • Suh, W., Cohen, D., Fruh, K., Wang, K., Peterson, P., and Williams, D. (1994). Interaction of MHC class I molecules with the transporter associated with antigen processing. Science 264, 1322–1326.

    • Google Scholar
    • Export Citation
  • Suh, W. K., Mitchell, E. K., Yang, Y., Peterson, P. A., Waneck, G. L., and Williams, D. B. (1996). MHC class I molecules form ternary complexes with calnexin and TAP and undergo peptide-regulated interaction with TAP via their extracellular domains. J. Exp. Med. 184, 337–348.

    • Google Scholar
    • Export Citation
  • Suh, W. K., Derby, M. A., Cohen-Doyle, M. F., Schoenhals, G. J., Fruh, K., Berzofsky, J. A., and Williams, D. B. (1999). Interaction of murine MHC class I molecules with tapasin and TAP enhances peptide loading and involves the heavy chain α3 domain. J. Immunol. 162, 1530–1540.

    • Google Scholar
    • Export Citation
  • Sun, J., Leahy, D. J., and Kavathas, P. B. (1995). Interaction between CD8 and major histocompatibility complex (MHC) class I mediated by multiple contact surfaces that include the α2 and α3 domains of MHC class I. J. Exp. Med. 182, 1275–1280.

    • Google Scholar
    • Export Citation
  • Tan, P., Kropshofer, H., Mandelboim, O., Bulbuc, N., Hammerling, G. J., and Momburg, F. (2002). Recruitment of MHC class I molecules by tapasin into the transporter associated with antigen processing-associated complex is essential for optimal peptide loading. J. Immunol. 168, 1950–1960.

    • Google Scholar
    • Export Citation
  • Tanioka, T., Hattori, A., Masuda, S., Nomura, Y., Nakayama, H., Mizutani, S., and Tsujimoto, M. (2003). Human leukocyte-derived arginine aminopeptidase. The third member of the oxytocinase subfamily of aminopeptidases. J. Biol. Chem. 278, 32275–32283.

    • Google Scholar
    • Export Citation
  • Tector, M., Zhang, Q., and Salter, R. D. (1997). β2-Microglobulin and calnexin can independently promote folding and disulfide bond formation in class I histocompatibility proteins. Mol. Immunol. 34, 401–408.

    • Google Scholar
    • Export Citation
  • Teng, M. S., Stephens, R., Du Pasquier, L., Freeman, T., Lindquist, J. A., and Trowsdale, J. (2002). A human TAPBP (TAPASIN)-related gene, TAPBP-R. Eur. J. Immunol. 32, 1059–1068.

    • Google Scholar
    • Export Citation
  • Tormo, J., Natarajan, K., Margulies, D. H., and Mariuzza, R. A. (1999). Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Nature 402, 623–631.

    • Google Scholar
    • Export Citation
  • Townsend, A., Elliott, T., Cerundolo, V., Foster, L., Barber, B., and Tse, A. (1990). Assembly of MHC class I molecules analyzed in vitro. Cell 62, 285–295.

    • Google Scholar
    • Export Citation
  • Trombetta, E. S., and Helenius, A. (1998). Lectins as chaperones in glycoprotein folding. Curr. Opin. Struct. Biol. 8, 587–592.

    • Google Scholar
    • Export Citation
  • Trombetta, E. S., and Helenius, A. (2000). Conformational requirements for glycoprotein reglucosylation in the endoplasmic reticulum. J. Cell Biol. 148, 1123–1129.

    • Google Scholar
    • Export Citation
  • Turnquist, H. R., Petersen, J. L., Vargas, S. E., McIlhaney, M. M., Bedows, E., Mayer, W. E., Grandea 3rd, A. G., Van Kaer, L., and Solheim, J. C. (2004). The Ig-like domain of tapasin influences intermolecular interactions. J. Immunol. 172, 2976–2984.

    • Google Scholar
    • Export Citation
  • Turnquist, H. R., Vargas, S. E., McIlhaney, M. M., Li, S., Wang, P., and Solheim, J. C. (2002a). Calreticulin binds to the α1 domain of MHC class I independently of tapasin. Tissue Antigens 59, 18–24.

    • Google Scholar
    • Export Citation
  • Turnquist, H. R., Vargas, S. E., Schenk, E. L., McIlhaney, M. M., Reber, A. J., and Solheim, J. C. (2002b). The interface between tapasin and MHC class I: identification of amino acid residues in both proteins that influence their interaction. Immunol. Res. 25, 261–269.

    • Google Scholar
    • Export Citation
  • van der Burg, S. H., Visseren, M. J., Brandt, R. M., Kast, W. M., and Melief, C. J. (1996). Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J. Immunol. 156, 3308–3314.

    • Google Scholar
    • Export Citation
  • van Leeuwen, J. E., and Kearse, K. P. (1996). Deglucosylation of N-linked glycans is an important step in the dissociation of calreticulin-class I-TAP complexes. Proc. Natl. Acad. Sci. USA 93, 13997–14001.

    • Google Scholar
    • Export Citation
  • Vassilakos, A., Cohen-Doyle, M. F., Peterson, P. A., Jackson, M. R., and Williams, D. B. (1996). The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J. 15, 1495–1506.

    • Google Scholar
    • Export Citation
  • Vilches, C. (2003). MHC class I peptide binding and tapasin. J. Immunol. 171, 3.

  • Walker, K. W., and Gilbert, H. F. (1997). Scanning and escape during protein-disulfide isomerase-assisted protein folding. J. Biol. Chem. 272, 8845–8848.

    • Google Scholar
    • Export Citation
  • Wearsch, P. A., Jakob, C. A., Vallin, A., Dwek, R. A., Rudd, P. M., and Cresswell, P. (2004). MHC class I molecules expressed with monoglucosylated N-linked glycans bind calreticulin independently of their assembly status. J. Biol. Chem. 279, 25112–25121.

    • Google Scholar
    • Export Citation
  • Wei, M. L., and Cresswell, P. (1992). HLA-A2 molecules in an antigen processing mutant cell contain signal sequence-derived peptides. Nature 356, 443–446.

    • Google Scholar
    • Export Citation
  • Williams, A., Peh, C. A., and Elliott, T. (2002a). The cell biology of MHC class I antigen presentation. Tissue Antigens 59, 3–17.

    • Google Scholar
    • Export Citation
  • Williams, A. P., Peh, C. A., Purcell, A. W., McCluskey, J., and Elliott, T. (2002b). Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity 16, 509–520.

    • Google Scholar
    • Export Citation
  • Williams, D., Swiedler, S., and Hart, G. (1985). Intracellular transport of memebrane glycoproteins: two closely related histocompatibility antigens differ in their rates of transit to the cell surface. J. Cell Biol. 101, 725–734.

    • Google Scholar
    • Export Citation
  • Wilson, I. A., and Bjorkman, P. J. (1998). Unusual MHC-like molecules: CD1, Fc receptor, the hemochromatosis gene product, and viral homologs. Curr. Opin. Immunol. 10, 67–73.

    • Google Scholar
    • Export Citation
  • Yague, J., Alvarez, I., Rognan, D., Ramos, M., Vazquez, J., and de Castro, J. A. (2000). An N-acetylated natural ligand of human histocompatibility leukocyte antigen (HLA)-B39. Classical major histocompatibility complex class I proteins bind peptides with a blocked NH2 terminus in vivo. J. Exp. Med. 191, 2083–2092.

    • Google Scholar
    • Export Citation
  • Yu, Y. Y., Myers, N. B., Hilbert, C. M., Harris, M. R., Balendiran, G. K., and Hansen, T. H. (1999a). Definition and transfer of a serological epitope specific for peptide-empty forms of MHC class I. Int. Immunol. 11, 1897–1906.

    • Google Scholar
    • Export Citation
  • Yu, Y. Y., Turnquist, H. R., Myers, N. B., Balendiran, G. K., Hansen, T. H., and Solheim, J. C. (1999b). An extensive region of an MHC class I α2 domain loop influences interaction with the assembly complex. J. Immunol. 163, 4427–4433.

    • Google Scholar
    • Export Citation
  • Zacharias, M., and Springer, S. (2004). Conformational flexibility of the MHC class I α12 domain in peptide bound and free states: a molecular dynamics simulation study. Biophys. J., in press.

  • Zapun, A., Darby, N. J., Tessier, D. C., Michalak, M., Bergeron, J. J., and Thomas, D. Y. (1998). Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57. J. Biol. Chem. 273, 6009–6012.

    • Google Scholar
    • Export Citation
  • Zarling, A. L., Luckey, C. J., Marto, J. A., White, F. M., Brame, C. J., Evans, A. M., Lehner, P. J., Cresswell, P., Shabanowitz, J., Hunt, D. F., and Engelhard, V. H. (2003). Tapasin is a facilitator, not an editor, of class I MHC Peptide binding. J. Immunol. 171, 5287–5295.

    • Google Scholar
    • Export Citation
  • Zernich, D., Purcell, A. W., Macdonald, W. A., Kjer-Nielsen, L., Ely, L. K., Laham, N., Crockford, T., Mifsud, N. A., Bharadwaj, M., Chang, L. et al. (2004). Natural HLA class I polymorphism controls the pathway of antigen presentation and susceptibility to viral evasion. J. Exp. Med. 200, 13–24.

    • Google Scholar
    • Export Citation
  • Zhang, C., Anderson, A., and DeLisi, C. (1998). Structural principles that govern the peptide-binding motifs of class I MHC molecules. J. Mol. Biol. 281, 929–947.

    • Google Scholar
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Biological Chemistry keeps you up-to-date with the latest advances in the molecular life sciences. The journal publishes Research Articles, Short Communications, Reviews and Minireviews. Areas include: general biochemistry/pathobiochemistry, structural biology, molecular and cellular biology, genetics and epigenetics, virology, molecular medicine, plant molecular biology/biochemistry and novel experimental methodologies.

Search