Spectroscopic and theoretical approaches for studying radical reactions in class I ribonucleotide reductase

Marina Bennati 1. , Friedhelm Lendzian 2. , Michael Schmittel 3.  and Hendrik Zipse 4.
  • 1. Institut für Physikalische und Theoretische Chemie und BMRZ, J.W. Goethe-Universität Frankfurt, Marie-Curie-Str. 11, D-60439 Frankfurt am Main, Germany
  • 2. Technische Universität Berlin, Institut für Chemie, Max-Volmer-Labor, Straße des 17. Juni 135, D-10623 Berlin, Germany
  • 3. Universität Siegen, Organische Chemie I, Fachbereich 8, Adolf-Reichwein Str., D-57068 Siegen, Germany
  • 4. Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 München, Germany

Abstract

Ribonucleotide reductases (RNRs) catalyze the production of deoxyribonucleotides, which are essential for DNA synthesis and repair in all organisms. The three currently known classes of RNRs are postulated to utilize a similar mechanism for ribonucleotide reduction via a transient thiyl radical, but they differ in the way this radical is generated. Class I RNR, found in all eukaryotic organisms and in some eubacteria and viruses, employs a diferric iron center and a stable tyrosyl radical in a second protein subunit, R2, to drive thiyl radical generation near the substrate binding site in subunit R1. From extensive experimental and theoretical research during the last decades, a general mechanistic model for class I RNR has emerged, showing three major mechanistic steps: generation of the tyrosyl radical by the diiron center in subunit R2, radical transfer to generate the proposed thiyl radical near the substrate bound in subunit R1, and finally catalytic reduction of the bound ribonucleotide. Amino acid- or substrate-derived radicals are involved in all three major reactions. This article summarizes the present mechanistic picture of class I RNR and highlights experimental and theoretical approaches that have contributed to our current understanding of this important class of radical enzymes.

  • Andersson, M.E., Högbom, M., Rinaldo-Matthis, A., Andersson, K.K., Sjöberg, B.M., and Nordlund, P. (1999). The crystal structure of an azide complex of the diferrous R2 subunit of ribonucleotide reductase displays a novel carboxylate shift with important mechanistic implications for diiron-catalyzed oxygen activation. J. Am. Chem. Soc. 121, 2346–2352.

    • Google Scholar
    • Export Citation
  • Antonello, S., Benassi, R., Gavioli, G., Taddei, F., and Maran, F. (2002). Theoretical and electrochemical analysis of dissociative electron transfers proceeding through formation of loose radical anion species: reduction of symmetrical and unsymmetrical disulfides. J. Am. Chem. Soc. 124, 7529–7538.

    • Google Scholar
    • Export Citation
  • Atkin, C.L., Thelander, L., Reichard, P., and Lang, G. (1973). Iron and free radical in ribonucleotide reductase – exchange of iron and Mössbauer spectroscopy of protein B2 subunit of Escherichia coli enzyme. J. Biol. Chem. 248, 7464–7472.

    • Google Scholar
    • Export Citation
  • Baik, M.-H., Newcomb, M., Friesner, R.A., and Lippard S.J. (2003). Mechanistic studies on the hydroxylation of methane by methane monooxygenase. Chem. Rev. 103, 2385–2419.

    • Google Scholar
    • Export Citation
  • Baldwin, J., Krebs, C., Ley, B.A., Edmondson, D.E., Huynh, B.H., and Bollinger, J.M. (2000). Mechanism of rapid electron transfer during oxygen activation in the R2 subunit of Escherichia coli ribonucleotide reductase. 1. Evidence for a transient tryptophan radical. J. Am. Chem. Soc. 122, 12195–12206.

    • Google Scholar
    • Export Citation
  • Baldwin, J., Voegtli, W.C., Khidekel, N., Moenne-Lopez, P., Krebs, C., Pereira, A.S., Ley, B.A., Huynh, B.H., Loehr, T.M., Riggs-Gelasco, P.J., et al. (2001). Rational reprogramming of the R2 subunit of Escherichia coli ribonucleotide reductase into a self-hydroxylating monooxygenase. J. Am. Chem. Soc. 123, 7017–7030.

    • Google Scholar
    • Export Citation
  • Baldwin, J., Krebs, C, Saleh, L., Stelling, M., Huynh, B.H., Bollinger, J.M., and Riggs-Gelasco, P.J. (2003). Structural characterization of the peroxodiiron(III) intermediate generated during oxygen activation by the W48A/D84E variant of ribonucleotide reductase protein R2 from Escherichia coli. Biochemistry 42, 13269–13279

    • Google Scholar
    • Export Citation
  • Bar, G., Bennati, M., Nguyen, H.H.T., Stubbe, J., and Griffin, R.G. (2001). High-frequency (140 GHz) time domain EPR and ENDOR spectroscopy: the tyrosyl radical-diiron cofactor in ribonucleotide reductase from yeast. J. Am. Chem. Soc. 123, 3569–3576.

    • Google Scholar
    • Export Citation
  • Bennati, M., Farrar, C.T., Bryant, J.A., Inati, S.J., Weis, V., Gerfen, G.J., Riggs-Galesco, P., Stubbe, J., and Griffin, R.G. (1999). Pulsed electron-nuclear double resonance (ENDOR) at 140 GHz. J. Magn. Reson. 138, 232–243.

    • Google Scholar
    • Export Citation
  • Bennati, M., Stubbe, J., and Griffin, R.G. (2001). High-frequency EPR and ENDOR: time-domain spectroscopy of ribonucleotide reductase. Appl. Magn. Res. 21, 389–410.

    • Google Scholar
    • Export Citation
  • Bennati, M., Weber, A., Antonic, J., Perlstein, D.L., Robblee, J., and Stubbe, J. (2003). Pulsed ELDOR spectroscopy measures the distance between the two tyrosyl radicals in the R2 subunit of the E. coli ribonucleotide reductase. J. Am. Chem. Soc. 125, 14988–14989.

    • Google Scholar
    • Export Citation
  • Bennati, M., Robblee, J.H., Mugnaini, V., Stubbe, J., Freed, J., and Borbat, P. (2005). EPR distance measurements support a model for long range radical initiation. J. Am. Chem. Soc., in press.

    • Google Scholar
    • Export Citation
  • Bleifuß, G., Kolberg, M., Pötsch, S., Hofbauer, W., Bittl, R., Lubitz, L., Gräslund, A., Lassmann, G., and Lendzian, F. (2001). Tryptophan and tyrosyl radicals in ribonucleotide reductase: a comparative high-field EPR study at 94 GHz. Biochemistry 40, 15362–15368.

    • Google Scholar
    • Export Citation
  • Bollinger, J.M. Jr., Edmondson, D.E., Huynh, B.H., Filley, J., Norton, J.R., and Stubbe, J. (1991). Mechanism of assembly of the tyrosyl radical-dinuclear iron cluster cofactor of ribonucleotide reductase. Science 253, 292–298.

    • Google Scholar
    • Export Citation
  • Bollinger, J.M. Jr., Tong, W.H., Ravi, N., Huynh, B.H., Edmondson, D.E., and Stubbe, J. (1994a). Mechanism of assembly of the tyrosyl radical-diiron(III) cofactor of E. coli ribonucleotide reductase. 2. Kinetics of the excess Fe2+ reaction by optical, EPR, and Mössbauer spectroscopies. J. Am. Chem. Soc. 116, 8015–8023.

    • Google Scholar
    • Export Citation
  • Bollinger, J.M. Jr., Tong, W.H., Ravi, N., Huynh, B.H., Edmondson, D.E., and Stubbe, J. (1994b). Mechanism of assembly of the tyrosyl radical-diiron(III) cofactor of E. coli ribonucleotide reductase. 3. Kinetics of the limiting Fe2+ reaction by optical, EPR, and Mössbauer spectroscopies. J. Am. Chem. Soc. 116, 8024–8032.

    • Google Scholar
    • Export Citation
  • Cerqueira, N.M.F.S.A., Fernandes, P.A., Eriksson, L.A., and Ramos, M.J. (2004a). Ribonucleotide activation by enzyme ribonucleotide reductase: understanding the role of the enzyme. J. Comp. Chem. 25, 2031–2037.

    • Google Scholar
    • Export Citation
  • Cerqueira, N.M.F.S.A., Fernandes, P.A., Eriksson, L.A., and Ramos, M.J. (2004b). New insights into a critical biological control step of the mechanism of ribonucleotide reductase. J. Mol. Struct. Theochem. 709, 53–65.

    • Google Scholar
    • Export Citation
  • Chang, M.C.Y., Yee, C.S., Stubbe, J., and Nocera, D.G. (2004). Turning on ribonucleotide reductase by light-initiated amino acid radical generation. Proc. Natl. Acad. Sci. USA 101, 6882–6887.

    • Google Scholar
    • Export Citation
  • Climent, I., Sjöberg, B.-M., and Huang, C.Y. (1991). Carboxyl-terminal peptides as probes for E. coli ribonucleotide reductase subunit interaction: kinetic analysis of inhibition studies. Biochemistry 30, 5164–5171.

    • Google Scholar
    • Export Citation
  • Climent, I., Sjöberg, B.-M., and Huang, C.Y. (1992). Site-directed mutagenesis and deletion of the carboxyl terminus of E. coli ribonucleotide reductase protein R2. Effects on catalytic activity and subunit interaction. Biochemistry 31, 4801–4807.

    • Google Scholar
    • Export Citation
  • Covès, J., de Fallois, L.L.H., Le Pape, L., Décout, J.-L., and Fontecave, M. (1996). Inactivation of Escherichia coli ribonucleotide reductase by 2′-deoxy-2′-mercaptouridine 5′-diphos-phate. Electron paramagnetic resonance evidence for a transient protein perthiyl radical. Biochemistry 35, 8595–8602.

    • Google Scholar
    • Export Citation
  • Denysenkov, V., Prisner, T.F., Stubbe, J., and Bennati, M. (2005). High frequency 180 GHz PELDOR. Appl. Magn. Reson., in press.

    • Google Scholar
    • Export Citation
  • Dong, Y. and Que, L. Jr. (1995). An exchange-coupled complex with localized high-spin FeIV and FeIII sites of relevance to cluster X of Escherichia coli ribonucleotide reductase. J. Am. Chem. Soc. 117, 11377–11378.

    • Google Scholar
    • Export Citation
  • Ehrenberg, A. and Reichard, P. (1972). Electron-spin resonance of iron-containing protein B2 from ribonucleotide reductase. J. Biol. Chem. 247, 3485–3488.

    • Google Scholar
    • Export Citation
  • Ekberg, M., Sahlin, M., Eriksson, M., and Sjöberg, B.-M. (1996). Two conserved tyrosine residues in protein R1 participate in an intermolecular electron transfer in ribonucleotide reductase. J. Biol. Chem. 271, 20655–20659.

    • Google Scholar
    • Export Citation
  • Ekberg, M., Pötsch, S., Sandin, E., Thunnissen, M., Nordlund, P., Sahlin, M., and Sjöberg, B.-M. (1998). Preserved catalytic activity in an engineered ribonucleotide reductase R2 protein with a nonphysiological radical transfer pathway. J. Biol. Chem. 272, 21003–21008.

    • Google Scholar
    • Export Citation
  • Eklund, E., Uhlin, U., Farnegardh, M., Logan, D.T., and Nordlund, P. (2001). Structure and function of the radical enzyme ribonucleotide reductase. Prog. Biophys. Mol. Biol. 77, 177–268.

    • Google Scholar
    • Export Citation
  • Engström, M., Himo, F., Gräslund, A., Minaev, B., Vahtras, O., and Agren, H. (2000). Hydrogen bonding to tyrosyl radical analyzed by ab initio g-tensor calculations. J. Phys. Chem. A 104, 5149–5153.

    • Google Scholar
    • Export Citation
  • Eriksson, M., Uhlin, U., Ramaswamy, S., Ekberg, M., Regnstrom, K., Sjöberg, B.-M., and Eklund, H. (1997). Binding of allosteric effectors to ribonucleotide reductase protein R1: reduction of active-site cysteines promotes substrate binding. Structure 5, 1077–1092.

    • Google Scholar
    • Export Citation
  • Fernandes, P.A. and Ramos, M.J. (2003). Theoretical studies on the mode of inhibition of ribonucleotide reductase by 2′-substituted substrate analogues. Chem. Eur. J. 9, 5916–5925.

    • Google Scholar
    • Export Citation
  • Fontecave, M. (1998). Ribonucleotide reductases and radical reactions. Cell. Mol. Life Sci. 54, 684–695.

  • Fontecave, M., Mulliez, E., and Logan, D.T. (2002). Deoxyribonucleotide synthesis in anaerobic microorganisms: the class III ribonucleotide reductase. Prog. Nucleic Acid Res. 72, 95–127.

    • Google Scholar
    • Export Citation
  • Fritscher, J., Artin, E., Wnuk, S., Bar, G., Robblee, J.H., Kacprzak, S., Kaupp, M., Griffin, R.G., Bennati, M., and Stubbe, J. (2005). Structure of the nitrogen-centered radical formed during inactivation of E. coli ribonucleotide reductase by 2′-azido-2′-deoxyuridine-5′-diphosphate: trapping of the 3′-ketonucleotide. J. Am. Chem. Soc. 127, 7729–7738.

    • Google Scholar
    • Export Citation
  • Ge, J., Yu, G., Ator, M.A., and Stubbe. J. (2003). Pre-steady-state and steady-state kinetic analysis of E. coli class I ribonucleotide reductase. Biochemistry 42, 10071–10083.

    • Google Scholar
    • Export Citation
  • Gerfen, G.J., Bellew, B.F., Un, S., Bollinger, J.M. Jr., Stubbe, J., Griffin, R.G., and Singel, D.J. (1993). High-frequency EPR spectroscopy of the tyrosyl radical in E. coli ribonucleotide reductase. J. Am. Chem. Soc. 115, 6420–6421.

    • Google Scholar
    • Export Citation
  • Gerfen, G.J., van der Donk, W.A., Yu, G., McCarthy, J.R., Jarvi, E.T., Matthews, D.P., Farrar, C., Griffin, R.G., and Stubbe, J. (1998). Characterization of a substrate-derived radical detected during the inactivation of ribonucleotide reductase from Escherichia coli by 2′-fluoromethylene-2′-deoxycytidine 5′-diphosphate. J. Am. Chem. Soc. 120, 3823–3835.

    • Google Scholar
    • Export Citation
  • Harris, G., Ator, M., and Stubbe, J. (1984). Mechanism of inactivation of Escherichia coli and Lactobacillus leichmannii ribonucleotide reductases by 2′-chloro-2′-deoxynucleotides: evidence for generation of 2-methylene-3(2H)-furanone. Biochemistry 23, 5214–5225.

    • Google Scholar
    • Export Citation
  • Han, W.G., Lovell, T., Liu, T., and Noodleman, L. (2004). Density functional study of a μ-1,1-carboxylate bridged Fe(III)-O-Fe(IV) model complex. 2. Comparison with ribonucleotide reductase intermediate X. Inorg. Chem. 43, 613–621.

    • Google Scholar
    • Export Citation
  • Himo, H., Gräslund, A., and Eriksson, L.A., (1997). Density functional calculations on model tyrosyl radicals. Biophys. J. 72, 1556–1567.

    • Google Scholar
    • Export Citation
  • Hoffman, M.Z. and Hayon, E. (1972). One-electron reduction of disulfide linkage in aqueous-solution – formation, protonation, and decay kinetics of RSSR-radical. J. Am. Chem. Soc. 94, 7950–7957.

    • Google Scholar
    • Export Citation
  • Hoganson, C.W., Sahlin, M., Sjöberg, B.-M., and Babcock, G.T. (1996). Electron magnetic resonance of the tyrosyl radical in ribonucleotide reductase from E. coli. J. Am. Chem. Soc. 118, 4672–4679.

    • Google Scholar
    • Export Citation
  • Högbom, M., Galander, M., Andersson, M., Kolberg, M., Hofbauer, W., Lassmann, G., Nordlund, P., and Lendzian, F. (2003). Displacement of the tyrosyl radical cofactor in ribonucleotide reductase obtained by single-crystal high-field EPR and 1.4-Å X-ray data. Proc. Natl. Acad. Sci. USA 100, 3209–3214.

    • Google Scholar
    • Export Citation
  • Högbom, M., Stenmark, P., Voevodskaya, N., McClarty, G., Gräslund, A., and Nordlund, P. (2004). The radical site in chlamydial ribonucleotide reductase defines a new R2 subclass. Science 305, 245–248.

    • Google Scholar
    • Export Citation
  • Jeschke, G. (2002). Determination of the nanostructure of polymer materials by electron paramagnetic resonancespectroscopy. Macromol. Rapid Commun. 23, 227–246.

    • Google Scholar
    • Export Citation
  • Kashlan, O.B. and Cooperman, B.S. (2003). Comprehensive model for allosteric regulation of mammalian ribonucleotide reductase: refinements and consequences. Biochemistry 42, 1696–1706.

    • Google Scholar
    • Export Citation
  • Kasrayan, A., Persson, A.L., Sahlin, M., and Sjöberg, B.M. (2002). The conserved active site asparagine in class I ribonucleotide reductase is essential for catalysis. J. Biol. Chem. 277, 5749–5755.

    • Google Scholar
    • Export Citation
  • Kolberg, M., Strand, K.R., and Andersson, K.K. (2004). Structure, function and mechanism of ribonucleotide reductases. Biochim. Biophys. Acta 1699, 1–34.

    • Google Scholar
    • Export Citation
  • Kolberg, M., Logan, D.T., Bleifuss, G., Pötsch, S., Sjöberg, B.-M., Gräslund, A., Lubitz, W., Lassmann, G., and Lendzian, F. (2005). A new tyrosyl radical on Phe208 as ligand to the diiron center in Escherichia coli ribonucleotide reductase, mutant Y122H. J. Biol. Chem. 280, 11233–11246.

    • Google Scholar
    • Export Citation
  • Krebs, C., Chen, S., Baldwin, J., Ley, B.A., Patel, U., Edmondson, D.E., Huynh, B.H., and Bollinger, J.M. Jr. (2000). Mechanism of rapid electron transfer during oxygen activation in the R2 subunit of Escherichia coli ribonucleotide reductase. 2. Evidence for and consequences of blocked electron transfer in the W48F variant. J. Am. Chem. Soc. 122, 12207–12219.

    • Google Scholar
    • Export Citation
  • Lal, M., Langels, A., Deiseroth, H.-J., Schlirf, J., and Schmittel, M. (2003). Role of hydrogen bonding in the oxidation potential of enols. J. Phys. Org. Chem. 16, 373–379.

    • Google Scholar
    • Export Citation
  • Lawrence, C.C., Bennati, M., Obias, H.V., Bar, G., Griffin, R.G., and Stubbe, J. (1999). High-field EPR detection of a disulfide radical anion in the reduction of cytidine 5′-diphosphate by the E441Q R1 mutant of Escherichia coli ribonucleotide reductase. Proc. Natl. Acad. Sci. USA 96, 8979–8984.

    • Google Scholar
    • Export Citation
  • Lendzian, F. (2005). Structure and interactions of amino acid radicals in class I ribonucleotide reductase studied by ENDOR and high-field EPR spectroscopy. Biochim. Biophys. Acta 1707, 67–90.

    • Google Scholar
    • Export Citation
  • Lendzian, F., Sahlin, M., MacMillan, F., Bittl, R., Fiege, R., Pötsch, S., Sjöberg, B.-M., Gräslund, A., Lubitz, W., and Lassmann, G. (1996). Electronic structure of neutral tryptophan radicals in ribonucleotide reductase studied by EPR and ENDOR spectroscopy. J. Am. Chem. Soc. 118, 8111–8120.

    • Google Scholar
    • Export Citation
  • Lenz, R. and Giese, B. (1997). Studies on the mechanism of ribonucleotide reductases. J. Am. Chem. Soc. 119, 2784–2794.

    • Google Scholar
    • Export Citation
  • Licht, S., Gerfen, G.J., and Stubbe, J. (1996). Thiyl radicals in ribonucleotide reductases. Science 271, 477–481.

    • Google Scholar
    • Export Citation
  • Ling J., Sahlin M., Sjöberg, B.M., Loehr, T.M., and Sanders-Loehr, J. (1994). Dioxygen is the source of the μ-oxo bridge in iron ribonucleotide reductase. J. Biol. Chem. 269, 5595–5601.

    • Google Scholar
    • Export Citation
  • Liu, A., Sahlin, M., Pötsch, S., Sjöberg, B.-M., and Gräslund, A. (1998). New paramagnetic species formed at the expense of the transient tyrosyl radical in mutant protein R2 F208Y of Escherichia coli ribonucleotide reductase. Biochem. Biophys. Res. Commun. 246, 740–745.

    • Google Scholar
    • Export Citation
  • Liu, A.M., Barra, A.L., Rubin, H., Lu, G.Z., and Gräslund, A. (2000). Heterogeneity of the local electrostatic environment of the tyrosyl radical in Mycobacterium tuberculosis ribonucleotide reductase observed by high-field electron paramagnetic resonance. J. Am. Chem. Soc. 122, 1974–1978.

    • Google Scholar
    • Export Citation
  • Logan, D.T., DeMare, F., Persson, B.O., Slaby, A., Sjöberg, B.-M., and Nordlund, P. (1998). Crystal structures of two self-hydroxylating ribonucleotide reductase protein R2 mutants: structural basis for the oxygen-insertion step of hydroxylation reactions catalyzed by diiron proteins. Biochemistry 37, 10798–10807.

    • Google Scholar
    • Export Citation
  • Lycksell, P.-O. and Sahlin, M. (1995). Demonstration of segmental mobility in the functionally essential carboxyl terminal part of ribonucleotide reductase protein R2 from E. coli. FEBS Lett. 368, 441–444.

    • Google Scholar
    • Export Citation
  • Lycksell, P.-O., Ingemarson, R., Davis, R., Gräslund, A., and Thelander, L. (1994). 1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal tail, essential for subunit interaction, is highly flexible but becomes rigid in the presence of protein R1. Biochemistry 33, 2838–2842.

    • Google Scholar
    • Export Citation
  • Lynch, B.J., Fast, P.L., Harris, M., and Truhlar, D.G. (2000). Adiabatic connection for kinetics. J. Phys. Chem. A 104, 4811–4815.

    • Google Scholar
    • Export Citation
  • Mao, S.S., Holler, T.P., Yu, G.X., Bollinger, J.M. Jr., Johnston, M.I., and Stubbe, J. (1992a). A model for the role of multiple cysteine residues involved in ribonucleotide reduction: amazing and still confusing. Biochemistry 31, 9733–9743.

    • Google Scholar
    • Export Citation
  • Mao, S.S., Holler, T.P., Bollinger, J.M. Jr., Yu, G.X., Johnston, M.I., and Stubbe, J. (1992b). Interaction of C225SR1 mutant subunit of ribonucleotide reductase with R2 and nucleoside diphosphates: tales of a suicidal enzyme. Biochemistry 31, 9744–9751.

    • Google Scholar
    • Export Citation
  • Mao, S.S., Yu, G.X., Chalfoun, D., and Stubbe, J. (1992c). Characterization of C439SR1, a mutant of Escherichia coli ribonucleotide diphosphate reductase: evidence that C439 is a residue essential for nucleotide reduction and C439SR1 is a protein possessing novel thioredoxin-like activity. Biochemistry 31, 9752–9759.

    • Google Scholar
    • Export Citation
  • Mezyk, S.P. and Armstrong, D.A. (1999). Disulfide anion radical equilibria: Effects of -NH3 +, -CO2-, -NHC(O)- and -CH3 groups. J. Chem. Soc. Perkin Trans. 2, 1411–1419.

    • Google Scholar
    • Export Citation
  • Mezzetti, A., Maniero, A.L., Brustolon, M., Giacometti, G., and Brunel, L.C. (1999). A tyrosyl radical in an irradiated single crystal of N-acetyl-L-tyrosine studied by X-band cw-EPR, high-frequency EPR, and ENDOR spectroscopies. J. Phys. Chem. A 103, 9636–9643.

    • Google Scholar
    • Export Citation
  • Miller, M.A., Gobena, F.T., Kauffmann, K., Munck, E., Que, L., and Stankovich, M.T. (1999). Differing roles for the diiron clusters of ribonucleotide reductase from aerobically grown Escherichia coli in the generation of the Y122 radical. J. Am. Chem. Soc. 121, 1096–1097.

    • Google Scholar
    • Export Citation
  • Milov, A.D., Maryasov, A.G., and Tsvetkov, Y.D. (1998). Pulsed electron double resonance (PELDOR) and its application in free-radicals research. Appl. Magn. Reson. 15, 107–143.

    • Google Scholar
    • Export Citation
  • Moenne-Loccoz, P., Baldwin, J., Ley, B.A., Loehr, T.M., and Bollinger, J.M. Jr. (1998). O2 activation by non-heme diiron proteins: identification of a symmetric 1,2-peroxide in a mutant of ribonucleotide reductase. Biochemistry 37, 14659–14663.

    • Google Scholar
    • Export Citation
  • Mohr, M. and Zipse, H. (1999). C-H bond activation in ribonucleotide reductases – do short strong hydrogen bonds play a role? Chem. Eur. J. 5, 3046–3054.

    • Google Scholar
    • Export Citation
  • Nielsen, B.B., Kauppi, B., Thelander, M., Thelander, L., Larsen, I.K., and Eklund, H. (1995). Crystallization and crystallographic investigations of the small subunit of mouse ribonucleotide reductase. FEBS Lett. 373, 310–312.

    • Google Scholar
    • Export Citation
  • Nordlund, P. and Eklund, H. (1993). Structure and function of the Escherichia coli ribonucleotide reductase protein R2 J. Mol. Biol. 232, 123–164.

    • Google Scholar
    • Export Citation
  • Nordlund, P., Sjöberg, B.-M., and Eklund, H. (1990). Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature 345, 593–598.

    • Google Scholar
    • Export Citation
  • Oelgemöller, M., Griesbeck, A.G., Lex, J., Haeuseler, A., Schmittel, M., Niki, M., Hesek, D., and Inoue, Y. (2001). Structural, CV and IR spectroscopic evidences for preorientation in PET-active phthalimido carboxylic acids. Org. Lett. 3, 1593–1596.

    • Google Scholar
    • Export Citation
  • Oelgemöller, M., Haeuseler, A., Schmittel, M., Griesbeck, A.G., Lex, J., and Inoue, Y. (2002). Hydrogen bonding in phthalimido carboxylic acids: cyclic voltammetric study and correlation with photochemical reactivity. Part 2. Aliphatic and aromatic acids. J. Chem. Soc. Perkin Trans. 2, 676–686.

    • Google Scholar
    • Export Citation
  • Pelmenschikov, V., Cho, K.-B., and Siegbahn, P.E.M. (2004). Class I ribonucleotide reductase revisited: the effect of removing a proton on Glu441. J. Comp. Chem. 25, 311–321.

    • Google Scholar
    • Export Citation
  • Pereira, S., Fernandes, P.A., and Ramos, M.J. (2003). Theoretical study of ribonucleotide reductase mechanism-based inhibition by 2-azido-2-deoxyribonucleoside 5-diphosphates. J. Comp. Chem. 25, 227–237.

    • Google Scholar
    • Export Citation
  • Pereira, S., Fernandes, P.A., and Ramos, M.J. (2005). Theoretical study on the inhibition of ribonucleotide reductase by 2′-mercapto-2′-deoxyribonucleoside-5′-diphosphates. J. Am. Chem. Soc. 127, 5174–5179.

    • Google Scholar
    • Export Citation
  • Persson, A.L., Eriksson, M., Katterle, B., Pötsch, S., Sahlin, M., and Sjöberg, B.M. (1997). A new mechanism-based radical intermediate in a mutant R1 protein affecting the catalytically essential Glu(441) in Escherichia coli ribonucleotide reductase. J. Biol. Chem. 272, 31533–31541.

    • Google Scholar
    • Export Citation
  • Persson, A.L., Sahlin, M., and Sjöberg, B.M. (1998). Cysteinyl and substrate radical formation in active site mutant E441Q of Escherichia coli class I ribonucleotide reductase. J. Biol. Chem. 273, 31016–312020.

    • Google Scholar
    • Export Citation
  • Pötsch, S., Lendzian, F., Ingemarson, R., Hornberg, A., Thelander, L., Lubitz, W., Lassmann, G., and Gräslund, A. (1999). The iron-oxygen reconstitution reaction in protein R2 tyr-177 mutants of mouse ribonucleotide reductase – EPR and electron nuclear double resonance studies on a new transient tryptophan radical. J. Biol. Chem. 274, 17696–17704.

    • Google Scholar
    • Export Citation
  • Ravi, N., Bollinger, J.M., Huynh, B.H., Edmondson, D.E., and Stubbe, J. (1994). Mechanism of assembly of the tyrosyl radical-diiron(III) cofactor of Escherichia coli. 1. Mössbauer characterization of the diferric radical precursor. J. Am. Chem. Soc. 116, 8007–8014.

    • Google Scholar
    • Export Citation
  • Reichard, P. (1993). From RNA to DNA, why so many ribonucleotide reductases? Science 260, 1773–1777.

  • Riggs-Gelasco, P.J., Shu, L., Chen, S., Burdi, D., Huynh, B.H., Que, L. Jr., and Stubbe, J.A. (1998). EXAFS characterization of the intermediate X generated during the assembly of the Escherichia coli ribonucleotide reductase R2 diferric tyrosyl radical cofactor. J. Am. Chem. Soc. 120, 849–860.

    • Google Scholar
    • Export Citation
  • Robins, M.J., Wnuk, S.F., Hernandez-Thirring, A.E., and Samano, M.C. (1996). Nucleic acid related compounds. 91. Biomimetic reactions are in harmony with loss of 2′-substituents as free radicals (not anions) during mechanism-based inactivation of ribonucleotide reductases. Differential interactions of azide, halogen, and alkylthio groups with tributylstannane and triphenylsilane. J. Am. Chem. Soc. 118, 11341–11348.

    • Google Scholar
    • Export Citation
  • Robins, M.J., Guo, Z., Samano, M.C., and Wnuk, S.F. (1999). Biomimetic simulation of free radical-initiated cascade reactions postulated to occur at the active site of ribonucleotide reductases. J. Am. Chem. Soc. 121, 1425–1433.

    • Google Scholar
    • Export Citation
  • Röck, M. and Schmittel, M. (1993). Controlled oxidation of enolates to α-carbonyl radicals and α-carbonyl cations. J. Chem. Soc. Chem. Commun. 1993, 1739–1741.

    • Google Scholar
    • Export Citation
  • Rova, U., Adrait, A., Pötsch, S., Gräslund, A., and Thelander, L. (1999). Evidence by mutagenesis that Tyr370 of the mouse ribonucleotide reductase R2 protein is the connecting link in the intersubunit radical transfer pathway. J. Biol. Chem. 274, 23746–23751.

    • Google Scholar
    • Export Citation
  • Sahlin, M., Sjöberg, B.-M., Backes, G., Loehr, T., and Sanders-Loehr, J. (1990). Activation of the iron-containing B2-protein of ribonucleotide reductase by hydrogen-peroxide. Biochem. Biophys. Res. Commun. 167, 813–818.

    • Google Scholar
    • Export Citation
  • Salowe, S., Bollinger, J.M. Jr., Ator, M., and Stubbe, J. (1993). Alternative model for mechanism-based inhibition of Escherichia coli ribonucleotide reductase by 2′-azido-Y-deoxyuridine 5′-diphosphate. Biochemistry 32, 12749–12760.

    • Google Scholar
    • Export Citation
  • Schmidt, P.P., Andersson, K.K., Barra, A.L., Thelander, L., and Gräslund, A. (1996). High field EPR studies of mouse ribonucleotide reductase indicate hydrogen bonding of the tyrosyl radical. J. Biol. Chem. 271, 23615–23518.

    • Google Scholar
    • Export Citation
  • Schmittel, M. (1994). Umpolung of ketones via enol radical cations. Top. Curr. Chem. 169, 183–230.

  • Schmittel, M. and Ghorai, M.K. (2001). Reactivity patterns of radical ions – a unifying picture of radical-anion and radical-cation transformations. In: Electron Transfer in Chemistry, Vol. 2, V. Balzani, ed. (Weinheim, Germany: Wiley-VCH), pp. 5–54.

  • Scott, C.P., Kashlan, O.B., Lear, J.D., and Cooperman, B.S. (2001). A quantitative model for allosteric control of purine reduction by murine ribonucleotide reductase. Biochemistry 40, 1651–1661.

    • Google Scholar
    • Export Citation
  • Siegbahn, P.E.M. (1998). Theoretical study of the substrate mechanism of ribonucleotide reductase. J. Am. Chem. Soc. 120, 8417–8429.

    • Google Scholar
    • Export Citation
  • Siegbahn, P.E.M. (1999). Theoretical model studies of the iron dimer complex of MMO and RNR. Inorg. Chem. 38, 2880–2889.

    • Google Scholar
    • Export Citation
  • Siegbahn, P.E.M., Eriksson, L., Himo, F., and Pavlov, M. (1998). Hydrogen atom transfer in ribonucleotide reductase (RNR). J. Phys. Chem. B 102, 10622–10629.

    • Google Scholar
    • Export Citation
  • Sjöberg, B.-M. (1997). Ribonucleotide reductases – a group of enzymes with different metallosites and a similar reaction mechanism. Struct. Bond. 88, 139–173.

    • Google Scholar
    • Export Citation
  • Sjöberg, B.-M., Gräslund, A., and Eckstein, F. (1983). A substrate radical intermediate in the reaction between ribonucleotide reductase from E. coli and 2′-azido-2′-deoxynucleoside diphosphates. J. Biol. Chem. 258, 8060–8067.

    • Google Scholar
    • Export Citation
  • Sommerhalter, M., Voegtli, W.C., Perlstein, D.L., Ge, J., Stubbe, J., and Rosenzweig, A.C. (2004). Structures of the yeast ribonucleotide reductase Rnr2 and Rnr4 homodimers. Biochemistry 43, 7736–7742.

    • Google Scholar
    • Export Citation
  • Steenken, S., Davies, M.J., and Gilbert, B.C. (1986). Pulse-radiolysis and electron spin-resonance studies of the dehydration of radicals from 1,2-diols and related-compounds. J. Chem. Soc. Perkin Trans. 2, 1003–1010.

    • Google Scholar
    • Export Citation
  • Strand, K.R., Karlsen, S., Kolberg, M., Rohr, A.K., Görbitz, C.H., and Andersson, K.K. (2004). Crystal structural studies of changes in the native dinuclear iron center of ribonucleotide reductase protein R2 from mouse. J. Biol. Chem. 279, 46794.

    • Google Scholar
    • Export Citation
  • Stubbe, J. (1989). Protein radical involvement in biological catalysis? Annu. Rev. Biochem. 58, 257–285.

  • Stubbe, J. and Ackles, D. (1980). On the mechanism of ribonucleoside diphosphate reductase from Escherichia-coli– evidence for 3′-C-H bond-cleavage. J. Biol. Chem. 255, 8027–8030.

    • Google Scholar
    • Export Citation
  • Stubbe, J. and van der Donk, W.A. (1998). Protein radicals in enzyme catalysis. Chem. Rev. 98, 705–762.

  • Stubbe, J., Ator, M., and Krenitsky, T. (1983). Mechanism of ribonucleoside diphosphate reductase from Escherichia-coli– evidence for 3′-C-H bond-cleavage. J. Biol. Chem. 258, 1625–1631.

    • Google Scholar
    • Export Citation
  • Stubbe, J., Nocera, D.G., Yee, C.S., and Chang, M.C.Y. (2003). Radical initiation in the class I ribonucleotide reductase: Long-range proton-coupled electron transfer? Chem. Rev. 103, 2167–2201.

    • Google Scholar
    • Export Citation
  • Sturgeon, B.E., Burdi, D., Chen, S.X., Huynh, B.H., Edmondson, D.E., Stubbe, J., and Hoffman, B.M. (1996). Reconsideration of X, the diiron intermediate formed during cofactor assembly in E. coli ribonucleotide reductase. J. Am. Chem. Soc. 118, 7551–7557.

    • Google Scholar
    • Export Citation
  • Thelander, L. (1973). Physicochemical characterization of ribonucleoside diphosphate reductase from E. coli. J. Biol. Chem. 248, 4531–4601.

    • Google Scholar
    • Export Citation
  • Thelander, L., Larsson, B., Hobbs, J., and Eckstein, F. (1976). Active site of ribonucleoside diphosphate reductase from E. coli. Inactivation of the enzyme by 2′-substituted ribonucleoside diphosphates. J. Biol. Chem. 251, 1398–1405.

    • Google Scholar
    • Export Citation
  • Tong, W.H., Chen, S., Lloyd, S.G., Edmondson, D.E., Huynh, B.H., and Stubbe, J. (1996). Mechanism of assembly of the diferric cluster-tyrosyl radical cofactor of Escherichia coli ribonucleotide reductase from the diferrous form of the R2 subunit. J. Am. Chem. Soc. 118, 2107–2108.

    • Google Scholar
    • Export Citation
  • Uhlin, U. and Eklund, H. (1994). Structure of ribonucleotide reductase protein R1. Nature 370, 533–539.

  • Un, S., Gerez, C., Elleingand, E., and Fontecave, M. (2001). Sen sitivity of tyrosyl radical g-values to changes in protein structure: a high-field EPR study of mutants of ribonucleotide reductase. J. Am. Chem. Soc. 123, 3048–3054.

    • Google Scholar
    • Export Citation
  • van Dam, P.J., Willems, J.P., Schmidt, P.P., Pötsch, S., Barra, A.L., Hagen, W.R., Hoffman, B.M., Andersson, K.K., and Gräslund, A. (1998). High-frequency EPR and pulsed Q-band ENDOR studies on the origin of the hydrogen bond in tyrosyl radicals of ribonucleotide reductase R2 proteins from mouse and herpes simplex virus type 1. J. Am. Chem. Soc. 120, 5080–5085.

    • Google Scholar
    • Export Citation
  • van der Donk, W.A., Stubbe, J., Gerfen, G.J., Bellew, B.F., and Griffin, R.G. (1995). EPR investigations of the inactivation of E. coli ribonucleotide reductase with 2′-azido-2′-deoxyuridine 5′-diphosphate: evidence for the involvement of the thiyl radical of C225-R1. J. Am. Chem. Soc. 117, 8908–8916.

    • Google Scholar
    • Export Citation
  • van der Donk, W.A., Yu, G., Silva, D.J., Stubbe, J., McCarthy, J.R., Jarvi, E.T., Matthews, D.P., Resvick, R.J., and Wagner, E. (1996). Inactivation of ribonucleotide reductase by (E)-2′-fluoromethylene-2′-deoxycytidine 5′-diphosphate: a paradigm for nucleotide mechanism-based inhibitors. Biochemistry 35, 8381–8391.

    • Google Scholar
    • Export Citation
  • van der Donk, W.A., Gerfen, G.J., and Stubbe, J. (1998). Direct EPR spectroscopic evidence for an allylic radical generated from (E)-2′-fluoromethylene-2′-deoxycytidine 5′-diphosphate by E. coli ribonucleotide reductase. J. Am. Chem. Soc. 120, 4252–4253.

    • Google Scholar
    • Export Citation
  • Voegtli, W.C., Ge, J., Perlstein, D.L., Stubbe, J., and Rosen-zweig, A.C. (2001). Structure of the yeast ribonucleotide reductase Y2Y4 heterodimer. Proc. Natl. Acad. Sci. USA 98, 10073–10078.

    • Google Scholar
    • Export Citation
  • Voevodskaya, N., Lendzian, F., and Gräslund, A. (2005). A stable FeIII-FeIV replacement of tyrosyl radical in a class I ribonucleotide reductase. Biochem. Biophys. Res. Commun. 330, 1213–1216.

    • Google Scholar
    • Export Citation
  • Yun, D., Krebs, C., Gupta, G.P., Iwig, D.F., Huynh, B.H., and Bollinger, J.M. Jr. (2002). Facile electron transfer during formation of cluster X and kinetic competence of X for tyrosyl radical production in protein R2 of ribonucleotide reductase from mouse. Biochemistry 41, 981–990.

    • Google Scholar
    • Export Citation
  • Zipse, H. (1995). The addition of water to ethylene and trans-butene radical-cation – model systems for the reaction of alkene radical cations with nucleophiles. J. Am. Chem. Soc. 117, 11798–11806.

    • Google Scholar
    • Export Citation
  • Zipse, H. (2003). The influence of hydrogen bonding interactions on the C-H bond activation step in class I ribonucleotide reductases. Org. Biomol. Chem. 1, 692–699.

    • Google Scholar
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Biological Chemistry keeps you up-to-date with the latest advances in the molecular life sciences. The journal publishes Research Articles, Short Communications, Reviews and Minireviews. Areas include: general biochemistry/pathobiochemistry, structural biology, molecular and cellular biology, genetics and epigenetics, virology, molecular medicine, plant molecular biology/biochemistry and novel experimental methodologies.

Search