Raft association and lipid droplet targeting of flotillins are independent of caveolin

Abstract

Lipid rafts are liquid ordered platforms that dynamically compartmentalize membranes. Caveolins and flotillins constitute a group of proteins that are enriched in these domains. Caveolin-1 has been shown to be an essential component of caveolae. Flotillins were also discovered as an integral component of caveolae and have since been suggested to interact with caveolins. However, flotillins are also expressed in non-caveolae-containing cells such as lymphocytes and neuronal cells. Hence, a discrepancy exists in the literature regarding the caveolin dependence of flotillin expression and their subcellular localization. To address this controversy, we used mouse embryonic fibroblasts (MEFs) from caveolin-1 knockout (Cav-1-/-) and wild-type mice to study flotillin expression and localization. Here we show that both membrane association and lipid raft partitioning of flotillins are not perturbed in Cav-1-/- MEFs, whereas membrane targeting and raft partitioning of caveolin-2, another caveolin family protein, is severely impaired. Moreover, we demonstrate that flotillin-1, but not flotillin-2, associates with lipid droplets upon oleic acid treatment and that this association is completely independent of caveolin. Taken together, our results show that flotillins are localized in lipid rafts independent of caveolin-1 and that translocation of flotillin-1 to lipid droplets is a caveolin-independent process.

  • Abrami, L., Liu, S., Cosson, P., Leppla, S.H., and van der Goot, F.G. (2003). Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell Biol. 160, 321–328.

    • Google Scholar
    • Export Citation
  • Baumann, C.A., Ribon, V., Kanzaki, M., Thurmond, D.C., Mora, S., Shigematsu, S., Bickel, P.E., Pessin, J.E., and Saltiel, A.R. (2000). CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407, 202–207.

    • Google Scholar
    • Export Citation
  • Bickel, P.E., Scherer, P.E., Schnitzer, J.E., Oh, P., Lisanti, M.P., and Lodish, H.F. (1997). Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J. Biol. Chem. 272, 13793–13802.

    • Google Scholar
    • Export Citation
  • Brasaemle, D.L., Dolios, G., Shapiro, L., and Wang, R. (2004). Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 279, 46835–46842.

    • Google Scholar
    • Export Citation
  • Breuza, L., Corby, S., Arsanto, J.P., Delgrossi, M.H., Scheiffele, P., and Le Bivic, A. (2002). The scaffolding domain of caveolin 2 is responsible for its Golgi localization in Caco-2 cells. J. Cell Sci. 115, 4457–4467.

    • Google Scholar
    • Export Citation
  • Campbell, S.M., Crowe, S.M., and Mak, J. (2001). Lipid rafts and HIV-1: from viral entry to assembly of progeny virions. J. Clin. Virol. 22, 217–227.

    • Google Scholar
    • Export Citation
  • Deininger, S.O., Rajendran, L., Lottspeich, F., Przybylski, M., Illges, H., Stuermer, C.A., and Reuter, A. (2003). Identification of teleost Thy-1 and association with the microdomain/lipid raft reggie proteins in regenerating CNS axons. Mol. Cell. Neurosci. 22, 544–554.

    • Google Scholar
    • Export Citation
  • Dermine, J.F., Duclos, S., Garin, J., St-Louis, F., Rea, S., Parton, R.G., and Desjardins, M. (2001). Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J. Biol. Chem. 276, 18507–18512.

    • Google Scholar
    • Export Citation
  • Drab, M., Verkade, P., Elger, M., Kasper, M., Lohn, M., Lauterbach, B., Menne, J., Lindschau, C., Mende, F., Luft, F.C.,et al. (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293, 2449–2452.

    • Google Scholar
    • Export Citation
  • Edidin, M. (2003). The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283.

    • Google Scholar
    • Export Citation
  • Ehehalt, R., Keller, P., Haass, C., Thiele, C., and Simons, K. (2003). Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160, 113–123.

    • Google Scholar
    • Export Citation
  • Fra, A.M., Williamson, E., Simons, K., and Parton, R.G. (1995). De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc. Natl. Acad. Sci. USA 92, 8655–8659.

    • Google Scholar
    • Export Citation
  • Fujimoto, T., Kogo, H., Ishiguro, K., Tauchi, K., and Nomura, R. (2001). Caveolin-2 is targeted to lipid droplets, a new ‘membrane domain’ in the cell. J. Cell Biol. 152, 1079–1085.

    • Google Scholar
    • Export Citation
  • Galbiati, F., Engelman, J.A., Volonte, D., Zhang, X.L., Minetti, C., Li, M., Hou, H. Jr., Kneitz, B., Edelmann, W., and Lisanti, M.P. (2001). Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J. Biol. Chem. 276, 21425–21433.

    • Google Scholar
    • Export Citation
  • Glebov, O.O., Bright, N.A., and Nichols, B.J. (2006). Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat. Cell Biol. 8, 46–54.

    • Google Scholar
    • Export Citation
  • Hooper, N.M. (2005). Roles of proteolysis and lipid rafts in the processing of the amyloid precursor protein and prion protein. Biochem. Soc. Trans. 33, 335–338.

    • Google Scholar
    • Export Citation
  • Kurzchalia, T. (2003). Anthrax toxin rafts into cells. J. Cell Biol. 160, 295–296.

  • Kurzchalia, T.V., and Parton, R.G. (1999). Membrane microdomains and caveolae. Curr. Opin. Cell Biol. 11, 424–431.

    • Google Scholar
    • Export Citation
  • Lang, D.M., Lommel, S., Jung, M., Ankerhold, R., Petrausch, B., Laessing, U., Wiechers, M.F., Plattner, H., and Stuermer, C.A. (1998). Identification of reggie-1 and reggie-2 as plasma membrane-associated proteins which cocluster with activated GPI-anchored cell adhesion molecules in non-caveolar micropatches in neurons. J. Neurobiol. 37, 502–523.

    • Google Scholar
    • Export Citation
  • Le Lay, S., Hajduch, E., Lindsay, M.R., Le Liepvre, X., Thiele, C., Ferre, P., Parton, R.G., Kurzchalia, T., Simons, K., and Dugail, I. (2006). Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis. Traffic 7, 549–561.

    • Google Scholar
    • Export Citation
  • Lencer, W.I. (2001). Microbes and microbial toxins: paradigms for microbial-mucosal toxins. V. Cholera: invasion of the intestinal epithelial barrier by a stably folded protein toxin. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G781–786.

    • Google Scholar
    • Export Citation
  • Liu, J., Deyoung, S.M., Zhang, M., Dold, L.H., and Saltiel, A.R. (2005). The stomatin/prohibitin/flotillin/HflK/C domain of flotillin-1 contains distinct sequences that direct plasma membrane localization and protein interactions in 3T3-L1 adipocytes. J. Biol. Chem. 280, 16125–16134.

    • Google Scholar
    • Export Citation
  • Liu, P., Ying, Y., Zhao, Y., Mundy, D.I., Zhu, M., and Anderson, R.G. (2004). Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J. Biol. Chem. 279, 3787–3792.

    • Google Scholar
    • Export Citation
  • Malaga-Trillo, E., Laessing, U., Lang, D.M., Meyer, A., and Stuermer, C.A. (2002). Evolution of duplicated reggie genes in zebrafish and goldfish. J. Mol. Evol. 54, 235–245.

    • Google Scholar
    • Export Citation
  • Martin, S. and Parton, R.G. (2005). Caveolin, cholesterol, and lipid bodies. Semin. Cell Dev. Biol. 16, 163–174.

    • Google Scholar
    • Export Citation
  • Neumann-Giesen, C., Falkenbach, B., Beicht, P., Claasen, S., Luers, G., Stuermer, C.A., Herzog, V., and Tikkanen, R. (2004). Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. Biochem. J. 378, 509–518.

    • Google Scholar
    • Export Citation
  • Ostermeyer, A.G., Paci, J.M., Zeng, Y., Lublin, D.M., Munro, S., and Brown, D.A. (2001). Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J. Cell Biol. 152, 1071–1078.

    • Google Scholar
    • Export Citation
  • Parton, R.G. (1996). Caveolae and caveolins. Curr. Opin. Cell Biol. 8, 542–548.

  • Parton, R.G. (2003). Caveolae – from ultrastructure to molecular mechanisms. Nat. Rev. Mol. Cell Biol. 4, 162–167.

    • Google Scholar
    • Export Citation
  • Pol, A., Luetterforst, R., Lindsay, M., Heino, S., Ikonen, E., and Parton, R.G. (2001). A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J. Cell Biol. 152, 1057–1070.

    • Google Scholar
    • Export Citation
  • Pol, A., Martin, S., Fernandez, M.A., Ferguson, C., Carozzi, A., Luetterforst, R., Enrich, C., and Parton, R.G. (2004). Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant. Mol. Biol. Cell 15, 99–110.

    • Google Scholar
    • Export Citation
  • Pol, A., Martin, S., Fernandez, M.A., Ingelmo-Torres, M., Ferguson, C., Enrich, C., and Parton, R.G. (2005). Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell Surface and lipid bodies. Mol. Biol. Cell 16, 2091–2105.

    • Google Scholar
    • Export Citation
  • Rajendran, L. and Simons, K. (2005). Lipid rafts and membrane dynamics. J. Cell Sci. 118, 1099–1102.

  • Rajendran, L., Masilamani, M., Solomon, S., Tikkanen, R., Stuermer, C.A., Plattner, H., and Illges, H. (2003). Asymmetric localization of flotillins/reggies in preassembled platforms confers inherent polarity to hematopoietic cells. Proc. Natl. Acad. Sci. USA 100, 8241–8246.

    • Google Scholar
    • Export Citation
  • Rajendran, L., Honsho, M., Zahn, T.R., Keller, P., Geiger, K.D., Verkade, P., and Simons, K. (2006). Alzheimer's disease β- amyloid peptides are released in association with exosomes. Proc. Natl. Acad. Sci. USA 103, 11172–11177.

    • Google Scholar
    • Export Citation
  • Razani, B., Engelman, J.A., Wang, X.B., Schubert, W., Zhang, X.L., Marks, C.B., Macaluso, F., Russell, R.G., Li, M., Pestell, R.G., et al. (2001). Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J. Biol. Chem. 276, 38121–38138.

    • Google Scholar
    • Export Citation
  • Schroeder, W.T., Stewart-Galetka, S., Mandavilli, S., Parry, D.A., Goldsmith, L., and Duvic, M. (1994). Cloning and characterization of a novel epidermal cell surface antigen (ESA). J. Biol. Chem. 269, 19983–19991.

    • Google Scholar
    • Export Citation
  • Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A., and Simons, K. (2003). Resistance of cell membranes to different detergents. Proc. Natl. Acad. Sci. USA 100, 5795–5800.

    • Google Scholar
    • Export Citation
  • Schulte, T., Paschke, K.A., Laessing, U., Lottspeich, F., and Stuermer, C.A. (1997). Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration. Development 124, 577–587.

    • Google Scholar
    • Export Citation
  • Shyng, S.L., Heuser, J.E., and Harris, D.A. (1994). A glycolipid- anchored prion protein is endocytosed via clathrin-coated pits. J. Cell Biol. 125, 1239–1250.

    • Google Scholar
    • Export Citation
  • Simons, K., and Toomre, D. (2000). Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39.

    • Google Scholar
    • Export Citation
  • Simons, K., and Vaz, W.L. (2004). Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295.

    • Google Scholar
    • Export Citation
  • Solomon, S., Masilamani, M., Rajendran, L., Bastmeyer, M., Stuermer, C.A., and Illges, H. (2002). The lipid raft microdomain-associated protein reggie-1/flotillin-2 is expressed in human B cells and localized at the plasma membrane and centrosome in PBMCs. Immunobiology 205, 108–119.

    • Google Scholar
    • Export Citation
  • Souto, R.P., Vallega, G., Wharton, J., Vinten, J., Tranum-Jensen, J., and Pilch, P.F. (2003). Immunopurification and characterization of rat adipocyte caveolae suggest their dissociation from insulin signaling. J. Biol. Chem. 278, 18321–18329.

    • Google Scholar
    • Export Citation
  • Umlauf, E., Csaszar, E., Moertelmaier, M., Schuetz, G.J., Parton, R.G., and Prohaska, R. (2004). Association of stomatin with lipid bodies. J. Biol. Chem. 279, 23699–23709.

    • Google Scholar
    • Export Citation
  • Volonte, D., Galbiati, F., Li, S., Nishiyama, K., Okamoto, T., and Lisanti, M.P. (1999). Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo. Characterization and epitope- mapping of a novel flotillin-1 monoclonal antibody probe. J. Biol. Chem. 274, 12702–12709.

    • Google Scholar
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Price including VAT
Log in
Already have access? Please log in.


Journal + Issues

Biological Chemistry keeps you up-to-date with the latest advances in the molecular life sciences. The journal publishes Research Articles, Short Communications, Reviews and Minireviews. Areas include: general biochemistry/pathobiochemistry, structural biology, molecular and cellular biology, genetics and epigenetics, virology, molecular medicine, plant molecular biology/biochemistry and novel experimental methodologies.

Search