The formate/nitrite transporter family of anion channels

Wei Lü 1 , Juan Du 1 , Nikola J. Schwarzer 1 , Tobias Wacker 1 , Susana L.A. Andrade, and Oliver Einsle
  • 1 Lehrstuhl für Biochemie, Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany
  • 2 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Hebelstrasse 25, D-79104 Freiburg, Germany
Wei Lü, Juan Du, Nikola J. Schwarzer, Tobias Wacker, Susana L.A. Andrade and Oliver Einsle

Abstract

The formate/nitrite transporter (FNT) family of integral membrane proteins comprises pentameric channels for monovalent anions that exhibit a broad specificity for small anions such as chloride, the physiological cargo molecules formate, nitrite, and hydrosulfide, and also larger organic acids. Three-dimensional structures are available for the three known subtypes, FocA, NirC, and HSC, which reveal remarkable evolutionary optimizations for the respective physiological context of the channels. FNT channels share a conserved translocation pathway in each protomer, with a central hydrophobic cavity that is separated from both sides of the membrane by a narrow constriction. A single protonable residue, a histidine, plays a key role by transiently protonating the transported anion to allow an uncharged species to pass the hydrophobic barrier. Further selectivity is reached through variations in the electrostatic surface potential of the proteins, priming the formate channel FocA for anion export, whereas NirC and HSC should work bidirectionally. Electrophysiological studies have shown that a broad variety of monovalent anions can be transported, and in the case of FocA, these match exactly the products of mixed-acid fermentation, the predominant metabolic pathway for most enterobacterial species.

  • Agre, P., King, L.S., Yasui, M., Guggino, W.B., Ottersen, O.P., Fujiyoshi, Y., Engel, A., and Nielsen, S. (2002). Aquaporin water channels – from atomic structure to clinical medicine. J. Physiol. 542, 3–16.

    • Crossref
  • Berks, B.C., Ferguson, S.J., Moir, J.W.B., and Richardson, D.J. (1995). Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim. Biophys. Acta 1232, 97–173.

    • Crossref
  • Brett, P.J., Burtnick, M.N., Su, H., Nair, V., and Gherardini, F.C. (2008). iNOS activity is critical for the clearance of Burkholderia mallei from infected RAW 264.7 murine macrophages. Cell Microbiol. 10, 487–498.

  • Chakravortty, D. and Hensel, M. (2003). Inducible nitric oxide synthase and control of intracellular bacterial pathogens. Microb. Infect. 5, 621–627.

    • Crossref
  • Clegg, S., Yu, F., Griffiths, L., and Cole, J.A. (2002). The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K-12: two nitrate and three nitrite transporters. Mol. Microbiol. 44, 143–155.

    • Crossref
  • Cole, J. (1996). Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol. Lett. 136, 1–11.

    • Crossref
  • Czyzewski, B.K. and Wang, D.N. (2012). Identification and characterization of a bacterial hydrosulphide ion channel. Nature 483, 494–497.

    • Crossref
  • Das, P., Lahiri, A., Lahiri, A., and Chakravortty, D. (2009). Novel role of the nitrite transporter NirC in Salmonella pathogenesis: SPI2-dependent suppression of inducible nitric oxide synthase in activated macrophages. Microbiology 155, 2476–2489.

  • Delomenie, C., Foti, E., Floch, E., Diderot, V., Porquet, D., Dupuy, C., and Bonaly, J. (2007). A new homolog of FocA transporters identified in cadmium-resistant Euglena gracilis. Biochem. Biophys. Res. Commun. 358, 455–461.

    • Crossref
  • Einsle, O. (2011). Structure and function of formate-dependent cytochrome c nitrite reductase, NrfA. Methods Enzymol. 496, 399–422.

    • Crossref
  • Einsle, O. and Kroneck, P.M.H. (2004). Structural basis of denitrification. Biol. Chem. 385, 875–883.

    • Crossref
  • Eisenman, G. and Horn, R. (1983). Ionic selectivity revisited – the role of kinetic and equilibrium processes in ion permeation through channels. J. Membr. Biol. 76, 197–225.

    • Crossref
  • Falke, D., Schulz, K., Doberenz, C., Beyer, L., Lilie, H., Thiemer, B., and Sawers, R.G. (2010). Unexpected oligomeric structure of the FocA formate channel of Escherichia coli: a paradigm for the formate-nitrite transporter family of integral membrane proteins. FEMS Microbiol. Lett. 303, 69–75.

    • Crossref
  • Feng, Z., Hou, T., and Li, Y. (2012). Concerted movement in pH-dependent gating of FocA from molecular dynamics simulations. J. Chem. Inf. Model. 52, 2119–2131.

    • Crossref
  • Hille, B. (2001). Ion Channels of Excitable Membranes, 3rd edition. (Sunderland, MA: Sinauer Associates).

  • Jia, W.J., Tovell, N., Clegg, S., Trimmer, M., and Cole, J. (2009). A single channel for nitrate uptake, nitrite export and nitrite uptake by Escherichia coli NarU and a role for NirC in nitrite export and uptake. Biochem. J. 417, 297–304.

    • Crossref
  • Kaback, H.R. (1974). Transport studies in bacterial-membrane vesicles. Science 186, 882–892.

    • Crossref
  • Knappe, J. and Sawers, G. (1990). A radical-chemical route to acetyl-CoA – the anaerobically induced pyruvate formate-lyase system of Escherichia coli. FEMS Microbiol. Rev. 75, 383–398.

    • Crossref
  • Latorre, R. and Miller, C. (1983). Conduction and selectivity in potassium channels. J. Membr. Biol. 71, 11–30.

    • Crossref
  • Leonhartsberger, S., Korsa, I., and Böck, A. (2002). The molecular biology of formate metabolism in enterobacteria. J. Mol. Microb. Biotechnol. 4, 269–276.

  • Lü, W., Du, J., Wacker, T., Gerbig-Smentek, E., Andrade, S.L.A., and Einsle, O. (2011). pH-Dependent gating in a FocA formate channel. Science 332, 352–354.

    • Crossref
  • Lü, W., Du, J., Schwarzer, N.J., Gerbig-Smentek, E., Einsle, O., and Andrade, S.L. (2012a). The formate channel FocA exports the products of mixed-acid fermentation. Proc. Natl. Acad. Sci. USA 109, 13254–13259.

    • Crossref
  • Lü, W., Schwarzer, N.J., Du, J., Gerbig-Smentek, E., Andrade, S.L.A., and Einsle, O. (2012b). Structural and functional characterization of the nitrite channel NirC from Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 109, 18395–18400.

    • Crossref
  • Martinez-Espinosa, R.M., Cole, J.A., Richardson, D.J., and Watmough, N.J. (2011). Enzymology and ecology of the nitrogen cycle. Biochem. Soc. Trans. 39, 175–178.

    • Crossref
  • Miller, C. (2006). CIC chloride channels viewed through a transporter lens. Nature 440, 484–489.

    • Crossref
  • Moir, J.W.B. and Wood, N.J. (2001). Nitrate and nitrite transport in bacteria. Cell. Mol. Life Sci. 58, 215–224.

    • Crossref
    • PubMed
  • Peakman, T., Crouzet, J., Mayaux, J.F., Busby, S., Mohan, S., Harborne, N., Wootton, J., Nicolson, R., and Cole, J.A. (1990). Nucleotide sequence, organisation and structural analysis of the products of genes in the nirB-cysG region of the Escherichia coli K-12 chromosome. Eur. J. Biochem. 191, 315–323.

    • Crossref
  • Rosen, B.P. (1986). Ion extrusion systems in Escherichia coli. Methods Enzymol. 125, 328–336.

    • Crossref
  • Rycovska, A., Hatahet, L., Fendler, K., and Michel, H. (2012). The nitrite transport protein NirC from Salmonella typhimurium is a nitrite/proton antiporter. Biochim. Biophys. Acta 1818, 1342–1350.

    • Crossref
  • Saier, M.H. Jr., Eng, B.H., Fard, S., Garg, J., Haggerty, D.A., Hutchinson, W.J., Jack, D.L., Lai, E.C., Liu, H.J., Nusinew, D.P., et al. (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422, 1–56.

    • Crossref
    • PubMed
  • Sawers, G. (1998). Biochemistry, physiology and molecular biology of glycyl radical enzymes. FEMS Microbiol. Rev. 22, 543–551.

    • Crossref
  • Sawers, R.G. (2005). Formate and its role in hydrogen production in Escherichia coli. Biochem. Soc. Trans. 33, 42–46.

    • Crossref
  • Singer, S.J. (1990). The structure and insertion of integral proteins in membranes. Annu. Rev. Cell. Biol. 6, 247–296.

    • Crossref
    • PubMed
  • Singer, S.J. and Nicolson, G.L. (1972). Fluid mosaic model of structure of cell membranes. Science 175, 720–731.

    • Crossref
  • Slater, E.C., Skulache,V.P., Azzone, G.F., Crofts, A.R., Pressman, B.C., Ernster, L., Harold, F.M., Kaback, H.R., Hinkle, P., Weber, M., et al. (1974). Mechanisms of active-transport – general discussion. Ann. NY Acad. Sci. 227, 348–354.

    • Crossref
  • Smart, O.S., Neduvelil, J.G., Wang, X., Wallace, B.A., and Sansom, M.S. (1996). HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360.

    • Crossref
  • Suppmann, B. and Sawers, G. (1994). Isolation and characterization of hypophosphite-resistant mutants of Escherichia coli – identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Mol. Microbiol. 11, 965–982.

    • Crossref
  • Tsien, R.W., Hess, P., Mccleskey, E.W., and Rosenberg, R.L. (1987). Calcium channels – mechanisms of selectivity, permeation, and block. Annu. Rev. Biophys. Biol. 16, 265–290.

    • Crossref
  • von Heijne, G. and Gavel, Y. (1988). Topogenic signals in integral membrane proteins. Eur. J. Biochem. 174, 671–678.

    • Crossref
  • Waight, A.B., Love, J., and Wang, D.N. (2010). Structure and mechanism of a pentameric formate channel. Nat. Struct. Mol. Biol. 17, 31–37.

    • Crossref
  • Wang, Y., Huang, Y.J., Wang, J.W., Cheng, C., Huang, W.J., Lu, P.L., Xu, Y.N., Wang, P.Y., Yan, N., and Shi, Y.G. (2009). Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel. Nature 462, 467–472.

    • Crossref
  • White, W.B. and Ferry, J.G. (1992). Identification of formate dehydrogenase-specific messenger-RNA species and nucleotide-sequence of the fdhC gene of Methanobacterium formicicum. J. Bacteriol. 174, 4997–5004.

    • Crossref
  • Xie, Q. and Nathan, C. (1994). The high-output nitric oxide pathway: role and regulation. J. Leukoc. Biol. 56, 576–582.

    • Crossref
  • Yang, Y.T., Bennett, G.N., and San, K.Y. (2001). The effects of feed and intracellular pyruvate levels on the redistribution of metabolic fluxes in Escherichia coli. Metab. Eng. 3, 115–123.

    • Crossref
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search