Biomechanical and biochemical regulation of cathepsin K expression in endothelial cells converge at AP-1 and NF-κB

Philip M. Keegan 1 , Suhaas Anbazhakan 1 , Baolin Kang 2 , Betty S. Pace 2 ,  and Manu O. Platt 1
  • 1 The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University
  • 2 Department of Pediatrics, Georgia Regents University
Philip M. Keegan
  • The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Suhaas Anbazhakan
  • The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Baolin Kang, Betty S. Pace and Manu O. Platt
  • Corresponding author
  • The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Cathepsins K and V are powerful elastases elevated in endothelial cells by tumor necrosis factor-α (TNFα) stimulation and disturbed blood flow both of which contribute to inflammation-mediated arterial remodeling. However, mechanisms behind endothelial cell integration of biochemical and biomechanical cues to regulate cathepsin production are not known. To distinguish these mechanisms, human aortic endothelial cells (HAECs) were stimulated with TNFα and exposed to pro-remodeling or vasoprotective shear stress profiles. TNFα upregulated cathepsin K via JNK/c-jun activation, but vasoprotective shear stress inhibited TNFα-stimulated cathepsin K expression. JNK/c-jun were still phosphorylated, but cathepsin K mRNA levels were significantly reduced to almost null indicating separate biomechanical regulation of cathepsin K by shear stress separate from biochemical stimulation. Treatment with Bay 11-7082, an inhibitor of IκBα phosphorylation, was sufficient to block induction of cathepsin K by both pro-remodeling shear stress and TNFα, implicating NF-κB as the biomechanical regulator, and its protein levels were reduced in HAECs by vasoprotective shear stress. In conclusion, NF-κB and AP-1 activation were necessary to activate cathepsin K expression in endothelial cells, highlighting integration of biochemical and biomechanical stimuli to control cathepsins K and V, powerful elastases implicated for arterial remodeling due to chronic inflammation and disturbed blood flow.

  • Barabino, G.A., Platt, M.O., and Kaul, D.K. (2010). Sickle cell biomechanics. Annu. Rev. Biomed. Eng. 12, 345–367.

    • Crossref
    • PubMed
    • Export Citation
  • Belcher, J.D., Mahaseth, H., Welch, T.E., Vilback, A.E., Sonbol, K.M., Kalambur, V.S., Bowlin, P.R., Bischof, J.C., Hebbel, R.P., and Vercellotti, G.M. (2005). Critical role of endothelial cell activation in hypoxia-induced vasoocclusion in transgenic sickle mice. Am. J. Physiol. Heart Circ. Physiol. 288, H2715–H2725.

    • Crossref
    • PubMed
    • Export Citation
  • Boros, L., Thomas, C., and Weiner, W.J. (1976). Large cerebral vessel disease in sickle cell anaemia. J. Neurol. Neurosurg. Psychiatry 39, 1236–1239.

    • Crossref
    • PubMed
    • Export Citation
  • Castier, Y., Ramkhelawon, B., Riou, S., Tedgui, A., and Lehoux, S. (2009). Role of NF-κB in flow-induced vascular remodeling. Antioxid Redox Signal 11, 1641–1649.

    • Crossref
    • PubMed
    • Export Citation
  • Chaar, V., Picot, J., Renaud, O., Bartolucci, P., Nzouakou, R., Bachir, D., Galacteros, F., Colin, Y., Le Van Kim, C., and El Nemer, W. (2010). Aggregation of mononuclear and red blood cells through an α4β1-Lu/basal cell adhesion molecule interaction in sickle cell disease. Haematologica 95, 1841–1848.

    • Crossref
    • PubMed
    • Export Citation
  • Chapman, H.A., Riese, R.J., and Shi, G.P. (1997). Emerging roles for cysteine proteases in human biology. Annu. Rev. Physiol. 59, 63–88.

    • Crossref
    • PubMed
    • Export Citation
  • Cuhlmann, S., Van der Heiden, K., Saliba, D., Tremoleda, J.L., Khalil, M., Zakkar, M., Chaudhury, H., Luong le, A., Mason, J.C., Udalova, I., et al. (2011). Disturbed blood flow induces RelA expression via c-Jun N-terminal kinase 1: a novel mode of NF-κB regulation that promotes arterial inflammation. Circ. Res. 108, 950–959.

    • Crossref
    • PubMed
    • Export Citation
  • Dai, G., Kaazempur-Mofrad, M.R., Natarajan, S., Zhang, Y., Vaughn, S., Blackman, B.R., Kamm, R.D., Garcia-Cardena, G., and Gimbrone, M.A., Jr. (2004). Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl. Acad. Sci. USA 101, 14871–14876.

    • Crossref
    • Export Citation
  • Frenette, P.S. (2004). Sickle cell vasoocclusion: heterotypic, multicellular aggregations driven by leukocyte adhesion. Microcirculation 11, 167–177.

    • Crossref
    • PubMed
    • Export Citation
  • Fujioka, S., Niu, J., Schmidt, C., Sclabas, G.M., Peng, B., Uwagawa, T., Li, Z., Evans, D.B., Abbruzzese, J.L., and Chiao, P.J. (2004). NF-κB and AP-1 connection: mechanism of NF-κB-dependent regulation of AP-1 activity. Mol. Cell Biol. 24, 7806–7819.

    • Crossref
    • PubMed
    • Export Citation
  • Gareus, R., Kotsaki, E., Xanthoulea, S., van der Made, I., Gijbels, M.J., Kardakaris, R., Polykratis, A., Kollias, G., de Winther, M.P., and Pasparakis, M. (2008). Endothelial cell-specific NF-κB inhibition protects mice from atherosclerosis. Cell Metab. 8, 372–383.

    • Crossref
    • PubMed
    • Export Citation
  • Gelb, B.D., Shi, G.P., Heller, M., Weremowicz, S., Morton, C., Desnick, R.J., and Chapman, H.A. (1997). Structure and chromosomal assignment of the human cathepsin K gene. Genomics 41, 258–262.

    • Crossref
    • PubMed
    • Export Citation
  • Glagov, S., Rowley, D.A., and Kohut, R.I. (1961). Atherosclerosis of human aorta and its coronary and renal arteries. A consideration of some hemodynamic factors which may be related to the marked differences in atherosclerotic involvement of the coronary and renal arteries. Arch. Pathol. 72, 558–571.

    • PubMed
    • Export Citation
  • Hajra, L., Evans, A.I., Chen, M., Hyduk, S.J., Collins, T., and Cybulsky, M.I. (2000). The NF-κB signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc. Natl. Acad. Sci. USA 97, 9052–9057.

    • Crossref
    • Export Citation
  • Hassler, O. (1962). The windows of the internal elastic lamella of the cerebral arteries. Virchow’s Arch. Pathol. Anat. Physiol. Klin. Med. 335, 127–132.

    • Crossref
    • Export Citation
  • Hillery, C. and Panepinto, J. (2004). Pathophysiology of stroke in sickle cell disease. Microcirculation 11, 195–208.

    • Crossref
    • PubMed
    • Export Citation
  • Keegan, P.M., Surapaneni, S., and Platt, M.O. (2012a). Sickle cell disease activates peripheral blood mononuclear cells to induce cathepsins k and v activity in endothelial cells. Anemia 2012, 201781.

  • Keegan, P.M., Wilder, C.L., and Platt, M.O. (2012b). Tumor necrosis factor alpha stimulates cathepsin K and V activity via juxtacrine monocyte-endothelial cell signaling and JNK activation. Mol. Cell Biochem. 367, 65–72.

    • Crossref
    • Export Citation
  • Ku, D.N. (1997). Blood flow in arteries. Annu. Rev. Fluid Mech. 29, 399–434.

    • Crossref
    • Export Citation
  • Ku, D.N. and Giddens, D.P. (1987). Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation. J. Biomech. 20, 407–421.

    • Crossref
    • Export Citation
  • Li, Z., Yasuda, Y., Li, W., Bogyo, M., Katz, N., Gordon, R.E., Fields, G.B., and Bromme, D. (2004). Regulation of collagenase activities of human cathepsins by glycosaminoglycans. J. Biol. Chem. 279, 5470–5479.

    • Crossref
    • PubMed
    • Export Citation
  • Li, W.A., Barry, Z.T., Cohen, J.D., Wilder, C.L., Deeds, R.J., Keegan, P.M., and Platt, M.O. (2010). Detection of femtomole quantities of mature cathepsin K with zymography. Anal. Biochem. 401, 91–98.

    • Crossref
    • PubMed
    • Export Citation
  • Lutgens, E., Lutgens, S.P., Faber, B.C., Heeneman, S., Gijbels, M.M., de Winther, M.P., Frederik, P., van der Made, I., Daugherty, A., Sijbers, A.M., et al. (2006). Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation 113, 98–107.

    • Crossref
    • PubMed
    • Export Citation
  • Malavé, I., Perdomo, Y., Escalona, E., Rodriguez, E., Anchustegui, M., Malavé, H., and Arends, T. (1993). Levels of tumor necrosis factor α/cachectin (TNFα) in sera from patients with sickle cell disease. Acta Haematol. 90, 172–176.

    • Crossref
    • PubMed
    • Export Citation
  • Merkel, K.H., Ginsberg, P.L., Parker, J.C., and Post, M.J. (1978). Cerebrovascular disease in sickle cell anemia: a clinical, pathological and radiological correlation. Stroke 9, 45–52.

    • Crossref
    • PubMed
    • Export Citation
  • Pang, M., Martinez, A.F., Fernandez, I., Balkan, W., and Troen, B.R. (2007). AP-1 stimulates the cathepsin K promoter in RAW 264.7 cells. Gene 403, 151–158.

    • Crossref
    • PubMed
    • Export Citation
  • Platt, O.S. (2005). Preventing stroke in sickle cell anemia. N. Engl. J. Med. 353, 2743–2745.

    • Crossref
    • PubMed
    • Export Citation
  • Platt, M.O., Ankeny, R.F., and Jo, H. (2006). Laminar shear stress inhibits cathepsin L activity in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26, 1784–1790.

    • Crossref
    • PubMed
    • Export Citation
  • Platt, M.O., Ankeny, R.F., Shi, G.P., Weiss, D., Vega, J.D., Taylor, W.R., and Jo, H. (2007). Expression of cathepsin K is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 292, H1479–H1486.

    • Crossref
    • PubMed
    • Export Citation
  • Sorescu, G.P., Song, H., Tressel, S.L., Hwang, J., Dikalov, S., Smith, D.A., Boyd, N.L., Platt, M.O., Lassegue, B., Griendling, K.K., et al. (2004). Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase. Circ. Res. 95, 773–779.

    • Crossref
    • PubMed
    • Export Citation
  • Stein, B., Baldwin, A.S., Jr., Ballard, D.W., Greene, W.C., Angel, P., and Herrlich, P. (1993). Cross-coupling of the NF-κB p65 and Fos/Jun transcription factors produces potentiated biological function. EMBO J 12, 3879–3891.

    • Crossref
    • PubMed
    • Export Citation
  • Stockman, J.A., Nigro, M.A., Mishkin, M.M., and Oski, F.A. (1972). Occlusion of large cerebral vessels in sickle-cell anemia. N. Engl. J. Med. 287, 846–849.

    • Crossref
    • PubMed
    • Export Citation
  • Sukhova G.K., Shi, G.P, Simon D.I., Chapman H.A., and Libby, P. (1998). Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J. Clin. Invest. 102, 576–583.

    • Crossref
    • Export Citation
  • Suo, J., Ferrara, D.E., Sorescu, D., Guldberg, R.E., Taylor, W.R., and Giddens, D.P. (2007). Hemodynamic shear stresses in mouse aortas: implications for atherogenesis. Arterioscler. Thromb. Vasc. Biol. 27, 346–351.

    • Crossref
    • PubMed
    • Export Citation
  • Switzer, J.A., Hess, D.C., Nichols, F.T., and Adams, R.J. (2006). Pathophysiology and treatment of stroke in sickle-cell disease: present and future. Lancet Neurol. 5, 501–512.

    • Crossref
    • PubMed
    • Export Citation
  • Verma, I.M., Stevenson, J.K., Schwarz, E.M., Van Antwerp, D., and Miyamoto, S. (1995). Rel/NF-κB/IκB family: intimate tales of association and dissociation. Gene. Dev. 9, 2723–2735.

    • Crossref
    • Export Citation
  • Wang, J., An, F.S., Zhang, W., Gong, L., Wei, S.J., Qin, W.D., Wang, X.P., Zhao, Y.X., Zhang, Y., Zhang, C., et al. (2011). Inhibition of c-Jun N-terminal kinase attenuates low shear stress-induced atherogenesis in apolipoprotein E-deficient mice. Mol. Med. 17, 990–999.

    • Crossref
    • PubMed
    • Export Citation
  • Wang, C., Baker, B.M., Chen, C.S., and Schwartz, M.A. (2013). Endothelial cell sensing of flow direction. Arterioscler. Thromb. Vasc. Biol. 33, 2130–2136.

    • Crossref
    • PubMed
    • Export Citation
  • Wilder, C.L., Park, K.Y., Keegan, P.M., and Platt, M.O. (2011). Manipulating substrate and pH in zymography protocols selectively distinguishes cathepsins K, L, S, and V activity in cells and tissues. Arch. Biochem. Biophys. 516, 52–57.

    • Crossref
    • PubMed
    • Export Citation
  • Zarins, C.K., Giddens, D.P., Bharadvaj, B.K., Sottiurai, V.S., Mabon, R.F., and Glagov, S. (1983). Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53, 502–514.

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Biological Chemistry keeps you up-to-date with the latest advances in the molecular life sciences. The journal publishes Research Articles, Short Communications, Reviews and Minireviews. Areas include: general biochemistry/pathobiochemistry, structural biology, molecular and cellular biology, genetics and epigenetics, virology, molecular medicine, plant molecular biology/biochemistry and novel experimental methodologies.

Search