A role for the metalloprotease invadolysin in insulin signaling and adipogenesis

Ching-Wen Chang 1 , Kanishk Abhinav 1 , Francesca Di Cara 1 , Ioanna Panagakou 1 , Sharron Vass 1  and Margarete M.S. Heck 1
  • 1 University of Edinburgh, Queen’s Medical Research Institute, University/BHF Center for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
Ching-Wen Chang, Kanishk Abhinav, Francesca Di Cara, Ioanna Panagakou, Sharron Vass and Margarete M.S. Heck

Abstract

Invadolysin is a novel metalloprotease conserved amongst metazoans that is essential for life in Drosophila. We previously showed that invadolysin was essential for the cell cycle and cell migration, linking to metabolism through a role in lipid storage and interaction with mitochondrial proteins. In this study we demonstrate that invadolysin mutants exhibit increased autophagy and decreased glycogen storage – suggestive of a role for invadolysin in insulin signaling in Drosophila. Consistent with this, effectors of insulin signaling were decreased in invadolysin mutants. In addition, we discovered that invadolysin was deposited on newly synthesized lipid droplets in a PKC-dependent manner. We examined two in vitro models of adipogenesis for the expression and localization of invadolysin. The level of invadolysin increased during both murine 3T3-L1 and human Simpson-Golabi-Behmel syndrome (SGBS), adipogenesis. Invadolysin displayed a dynamic localization to lipid droplets over the course of adipogenesis, which may be due to the differential expression of distinct invadolysin variants. Pharmacological inhibition of adipogenesis abrogated the increase in invadolysin. In summary, our results on in vivo and in vitro systems highlight an important role for invadolysin in insulin signaling and adipogenesis.

    • Supplementary material
  • Accioly, M.T., Pacheco, P., Maya-Monteiro, C.M., Carrossini, N., Robbs, B.K., Oliveira, S.S., Kaufmann, C., Morgado-Diaz, J.A., Bozza, P.T., and Viola, J.P. (2008). Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res. 68, 1732–1740.

  • Akimoto, N., Sato, T., Iwata, C., Koshizuka, M., Shibata, F., Nagai, A., Sumida, M., and Ito, A. (2005). Expression of perilipin A on the surface of lipid droplets increases along with the differentiation of hamster sebocytes in vivo and in vitro. J. Invest. Dermatol. 124, 1127–1133.

  • Andersson, L., Bostrom, P., Ericson, J., Rutberg, M., Magnusson, B., Marchesan, D., Ruiz, M., Asp, L., Huang, P., Frohman, M.A., et al. (2006). PLD1 and ERK2 regulate cytosolic lipid droplet formation. J. Cell Sci. 119, 2246–2257.

  • Arimura, N., Horiba, T., Imagawa, M., Shimizu, M., and Sato, R. (2004). The peroxisome proliferator-activated receptor g regulates expression of the perilipin gene in adipocytes. J. Biol. Chem. 279, 10070–10076.

  • Aubin, D., Gagnon, A., and Sorisky, A. (2005). Phosphoinositide 3-kinase is required for human adipocyte differentiation in culture. Int. J. Obes. (Lond.) 29, 1006–1009.

  • Barak, Y., Nelson, M.C., Ong, E.S., Jones, Y.Z., Ruiz-Lozano, P., Chien, K.R., Koder, A., and Evans, R.M. (1999). PPARg is required for placental, cardiac, and adipose tissue development. Mol. Cell 4, 585–595.

  • Bartz, R., Zehmer, J.K., Zhu, M., Chen, Y., Serrero, G., Zhao, Y., and Liu, P. (2007). Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation. J. Proteome. Res. 6, 3256–3265.

  • Blom, N., Gammeltoft, S., and Brunak, S. (1999). Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294, 1351–1362.

  • Blom, N., Sicheritz-Pontén, T., Gupta, R., Gammeltoft, S., and Brunak, S. (2004). Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4, 1633–1649.

  • Blouin, C.M., Le Lay, S., Lasnier, F., Dugail, I., and Hajduch, E. (2008). Regulated association of caveolins to lipid droplets during differentiation of 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 376, 331–335.

  • Brasaemle, D.L., Dolios, G., Shapiro, L., and Wang, R. (2004). Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 279, 46835–46842.

  • Cermelli, S., Guo, Y., Gross, S.P., and Welte, M.A. (2006). The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr. Biol. 16, 1783–1795.

  • Chen, J.S., Greenberg, A.S., and Wang, S.M. (2002). Oleic acid-induced PKC isozyme translocation in RAW 264.7 macrophages. J. Cell Biochem. 86, 784–791.

  • Chikte, S., Panchal, N., and Warnes, G. (2014). Use of LysoTracker dyes: a flow cytometric study of autophagy. Cytometry A 85, 169–178.

  • Cobbe, N., Marshall, K.M., Gururaja Rao, S., Chang, C.W., Di Cara, F., Duca, E., Vass, S., Kassan, A., and Heck, M.M. (2009). The conserved metalloprotease invadolysin localizes to the surface of lipid droplets. J. Cell Sci. 122, 3414–3423.

  • Di Cara, F., Duca, E., Dunbar, D.R., Cagney, G., and Heck, M.M. (2013). Invadolysin, a conserved lipid-droplet-associated metalloproteinase, is required for mitochondrial function in Drosophila. J. Cell Sci. 126, 4769–4781.

  • Eberlé, D., Hegarty, B., Bossard, P., Ferré, P., and Foufelle, F. (2004). SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86, 839–848.

  • El-Chaâr, D., Gagnon, A., and Sorisky, A. (2004). Inhibition of insulin signaling and adipogenesis by rapamycin: effect on phosphorylation of p70 S6 kinase vs eIF4E-BP1. Int. J. Obes. Relat. Metab. Disord. 28, 191–198.

  • Farmer, S.R. (2006). Transcriptional control of adipocyte formation. Cell Metab. 4, 263–273.

  • Fingar, D.C. and Blenis, J. (2004). Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23, 3151–3171.

  • Fischer-Posovszky, P., Newell, F.S., Wabitsch, M., and Tornqvist, H.E. (2008). Human SGBS cells-a unique tool for studies of human fat cell biology. Obes. Facts 1, 184–189.

  • Fleming, I., MacKenzie, S.J., Vernon, R.G., Anderson, N.G., Houslay, M.D., and Kilgour, E. (1998). Protein kinase C isoforms play differential roles in the regulation of adipocyte differentiation. Biochem. J. 333, 719–727.

  • Garofalo, R.S. (2002). Genetic analysis of insulin signaling in Drosophila. Trends Endocrinol. Metab. 13, 156–162.

  • Goldberg, A.A., Bourque, S.D., Kyryakov, P., Boukh-Viner, T., Gregg, C., Beach, A., Burstein, M.T., Machkalyan, G., Richard, V., Rampersad, S., et al. (2009). A novel function of lipid droplets in regulating longevity. Biochem. Soc. Trans. 37, 1050–1055.

  • Gomis-Ruth, F.X. (2003). Structural aspects of the metzincin clan of metalloendopeptidases. Mol. Biotechnol. 24, 157–202.

  • Green, H. and Kehinde, O. (1976). Spontaneous heritable changes leading to increased adipose conversion in 3T3 cells. Cell 7, 105–113.

  • Halse, R., Bonavaud, S.M., Armstrong, J.L., McCormack, J.G., and Yeaman, S.J. (2001). Control of glycogen synthesis by glucose, glycogen, and insulin in cultured human muscle cells. Diabetes 50, 720–726.

  • Holm, C. (2003). Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem. Soc. Trans. 31, 1120–1124.

  • Imamura, M., Inoguchi, T., Ikuyama, S., Taniguchi, S., Kobayashi, K., Nakashima, N., and Nawata, H. (2002). ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts. Am. J. Physiol. Endocrinol. Metab. 283, E775–783.

  • Inoki, K., Li, Y., Zhu, T., Wu, J., and Guan, K.L. (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648–657.

  • Jung, C.H., Ro, S.H., Cao, J., Otto, N.M., and Kim, D.H. (2010). mTOR regulation of autophagy. FEBS Lett. 584, 1287–1295.

  • Kim, J.E. and Chen, J. (2004). regulation of peroxisome proliferator-activated receptor- g activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 53, 2748–2756.

  • Lawrence, J.C., Lin, T.A., McMahon, L.P., and Choi, K.M. (2004). Modulation of the protein kinase activity of mTOR. Curr. Top Microbiol. Immunol. 279, 199–213.

  • Le Lay, S., Hajduch, E., Lindsay, M.R., Le Lièpvre, X., Thiele, C., Ferré, P., Parton, R.G., Kurzchalia, T., Simons, K., and Dugail, I. (2006). Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis. Traffic 7, 549–561.

  • Li, Z., Thiel, K., Thul, P.J., Beller, M., Kühnlein, R.P., and Welte, M.A. (2012). Lipid droplets control the maternal histone supply of Drosophila embryos. Curr. Biol. 22, 2104–2113.

  • Manning, B.D., Tee, A.R., Logsdon, M.N., Blenis, J., and Cantley, L.C. (2002). Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 10, 151–162.

  • McHugh, B., Krause, S.A., Yu, B., Deans, A.M., Heasman, S., McLaughlin, P., and Heck, M.M. (2004). Invadolysin: a novel, conserved metalloprotease links mitotic structural rearrangements with cell migration. J. Cell Biol. 167, 673–686.

  • Miura, S., Gan, J.W., Brzostowski, J., Parisi, M.J., Schultz, C.J., Londos, C., Oliver, B., and Kimmel, A.R. (2002). Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J. Biol. Chem. 277, 32253–32257.

  • Müller, G., Over, S., Wied, S., and Frick, W. (2008). Association of (c)AMP-degrading glycosylphosphatidylinositol-anchored proteins with lipid droplets is induced by palmitate, H2O2 and the sulfonylurea drug, glimepiride, in rat adipocytes. Biochemistry 47, 1274–1287.

  • Munafó, D.B. and Colombo, M.I. (2001). A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J. Cell Sci. 114, 3619–3629.

  • Musselman, L.P., Fink, J.L., Narzinski, K., Ramachandran, P.V., Hathiramani, S.S., Cagan, R.L., and Baranski, T.J. (2011). A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Models Mech. 4, 842–849.

  • Naslavsky, N., Rahajeng, J., Rapaport, D., Horowitz, M., and Caplan, S. (2007). EHD1 regulates cholesterol homeostasis and lipid droplet storage. Biochem. Biophys. Res. Commun. 357, 792–799.

  • Norman, B.H., Shih, C., Toth, J.E., Ray, J.E., Dodge, J.A., Johnson, D.W., Rutherford, P.G., Schultz, R.M., Worzalla, J.F., and Vlahos, C.J. (1996). Studies on the mechanism of phosphatidylinositol 3-kinase inhibition by wortmannin and related analogs. J. Med. Chem. 39, 1106–1111.

  • Oshiro, N., Yoshino, K., Hidayat, S., Tokunaga, C., Hara, K., Eguchi, S., Avruch, J., and Yonezawa, K. (2004). Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes. Cells 9, 359–366.

  • Ozeki, S., Cheng, J., Tauchi-Sato, K., Hatano, N., Taniguchi, H., and Fujimoto, T. (2005). Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J. Cell Sci. 118, 2601–2611.

  • Potter, C.J., Pedraza, L.G., and Xu, T. (2002). Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 4, 658–665.

  • Prusty, D., Park, B.H., Davis, K.E., and Farmer, S.R. (2002). Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPARg) and C/EBPa gene expression during the differentiation of 3T3-L1 preadipocytes. J. Biol. Chem. 277, 46226–46232.

  • Rao, S.G., Janiszewski, M.M., Duca, E., Nelson, B., Abhinav, K., Panagakou, I., Vass, S., and Heck, M.M. (2015). Invadolysin acts genetically via the SAGA complex to modulate chromosome structure. Nucleic Acids Res. 43, 3546–3562.

  • Rawlings, N.D. and Barrett, A.J. (1999). MEROPS: the peptidase database. Nucleic Acids Res. 27, 325–331.

  • Rosen, E.D. and MacDougald, O.A. (2006). Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7, 885–896.

  • Rosen, E.D. and Spiegelman, B.M. (2000). Peroxisome proliferator-activated receptor g ligands and atherosclerosis: ending the heartache. J. Clin. Invest. 106, 629–631.

  • Rosen, E.D., Sarraf, P., Troy, A.E., Bradwin, G., Moore, K., Milstone, D.S., Spiegelman, B.M., and Mortensen, R.M. (1999). PPARg is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611–617.

  • Sakaue, H., Ogawa, W., Matsumoto, M., Kuroda, S., Takata, M., Sugimoto, T., Spiegelman, B.M., and Kasuga, M. (1998). Posttranscriptional control of adipocyte differentiation through activation of phosphoinositide 3-kinase. J. Biol. Chem. 273, 28945–28952.

  • Scherzer, C.R., Jensen, R.V., Gullans, S.R., and Feany, M.B. (2003). Gene expression changes presage neurodegeneration in a Drosophila model of Parkinson’s disease. Hum. Mol. Genet. 12, 2457–2466.

  • Smirnova, E., Goldberg, E.B., Makarova, K.S., Lin, L., Brown, W.J., and Jackson, C.L. (2006). ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells. EMBO Rep. 7, 106–113.

  • Student, A.K., Hsu, R.Y., and Lane, M.D. (1980). Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. J. Biol. Chem. 255, 4745–4750.

  • Taniguchi, C.M., Emanuelli, B., and Kahn, C.R. (2006). Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85–96.

  • Teixeira, L., Rabouille, C., Rørth, P., Ephrussi, A., and Vanzo, N.F. (2003). Drosophila Perilipin/ADRP homologue Lsd2 regulates lipid metabolism. Mech. Dev. 120, 1071–1081.

  • Teleman, A.A., Chen, Y.W., and Cohen, S.M. (2005). 4E-BP functions as a metabolic brake used under stress conditions but not during normal growth. Genes. Dev. 19, 1844–1848.

  • Tontonoz, P., Hu, E., and Spiegelman, B.M. (1994). Stimulation of adipogenesis in fibroblasts by PPARg 2, a lipid-activated transcription factor. Cell 79, 1147–1156.

  • Tseng, Y.H., Kriauciunas, K.M., Kokkotou, E., and Kahn, C.R. (2004). Differential roles of insulin receptor substrates in brown adipocyte differentiation. Mol. Cell Biol. 24, 1918–1929.

  • Tsukiyama-Kohara, K., Poulin, F., Kohara, M., DeMaria, C.T., Cheng, A., Wu, Z., Gingras, A.C., Katsume, A., Elchebly, M., Spiegelman, B.M., et al. (2001). Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nat. Med. 7, 1128–1132.

  • Turro, S., Ingelmo-Torres, M., Estanyol, J.M., Tebar, F., Fernandez, M.A., Albor, C.V., Gaus, K., Grewal, T., Enrich, C., and Pol, A. (2006). Identification and characterization of associated with lipid droplet protein 1: a novel membrane-associated protein that resides on hepatic lipid droplets. Traffic 7, 1254–1269.

  • Um, S.H., Frigerio, F., Watanabe, M., Picard, F., Joaquin, M., Sticker, M., Fumagalli, S., Allegrini, P.R., Kozma, S.C., Auwerx, J., et al. (2004). Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200–205.

  • Vass, S. and Heck, M.M. (2013). Perturbation of invadolysin disrupts cell migration in zebrafish (Danio rerio). Exp. Cell Res. 319, 1198–1212.

  • Vereshchagina, N. and Wilson, C. (2006). Cytoplasmic activated protein kinase Akt regulates lipid-droplet accumulation in Drosophila nurse cells. Development 133, 4731–4735.

  • Vlahos, C.J., Matter, W.F., Hui, K.Y., and Brown, R.F. (1994). A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. 269, 5241–5248.

  • Wabitsch, M., Brenner, R.E., Melzner, I., Braun, M., Möller, P., Heinze, E., Debatin, K.M., and Hauner, H. (2001). Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation. Int. J. Obes. Relat. Metab. Disord. 25, 8–15.

  • Walther, T.C. and Farese, R.V. (2012). Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81, 687–714.

  • Wang, Z., Wilson, W.A., Fujino, M.A., and Roach, P.J. (2001). Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol. Cell Biol. 21, 5742–5752.

  • Welte, M.A. (2015). Expanding roles for lipid droplets. Curr. Biol. 25, R470–R481.

  • Wolins, N.E., Quaynor, B.K., Skinner, J.R., Tzekov, A., Croce, M.A., Gropler, M.C., Varma, V., Yao-Borengasser, A., Rasouli, N., Kern, P.A., et al. (2006). OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization. Diabetes 55, 3418–3428.

  • Wong, R.H. and Sul, H.S. (2010). Insulin signaling in fatty acid and fat synthesis: a transcriptional perspective. Curr. Opin. Pharmacol. 10, 684–691.

  • Xuan, J.Y., Hughes-Benzie, R.M., and MacKenzie, A.E. (1999). A small interstitial deletion in the GPC3 gene causes Simpson-Golabi-Behmel syndrome in a Dutch-Canadian family. J. Med. Genet. 36, 57–58.

  • Xue, Y., Ren, J., Gao, X., Jin, C., Wen, L., and Yao, X. (2008). GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol. Cell Proteomics 7, 1598–1608.

  • Yamaguchi, T., Omatsu, N., Matsushita, S., and Osumi, T. (2004). CGI-58 interacts with perilipin and is localized to lipid droplets. Possible involvement of CGI-58 mislocalization in Chanarin-Dorfman syndrome. J. Biol. Chem. 279, 30490–30497.

  • Yamakawa, T., Whitson, R.H., Li, S.L., and Itakura, K. (2008). Modulator recognition factor-2 is required for adipogenesis in mouse embryo fibroblasts and 3T3-L1 cells. Mol. Endocrinol. 22, 441–453.

  • Yang, Q., Inoki, K., Kim, E., and Guan, K.L. (2006). TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity. Proc. Natl. Acad. Sci. USA 103, 6811–6816.

  • Yu, W., Chen, Z., Zhang, J., Zhang, L., Ke, H., Huang, L., Peng, Y., Zhang, X., Li, S., Lahn, B.T., et al. (2008). Critical role of phosphoinositide 3-kinase cascade in adipogenesis of human mesenchymal stem cells. Mol. Cell Biochem. 310, 11–18.

  • Zehmer, J.K., Bartz, R., Liu, P., and Anderson, R.G. (2008). Identification of a novel N-terminal hydrophobic sequence that targets proteins to lipid droplets. J. Cell Sci. 121, 1852–1860.

  • Zhou, Y., Wang, D., Li, F., Shi, J., and Song, J. (2006). Different roles of protein kinase C-bI and -d in the regulation of adipocyte differentiation. Int J Biochem Cell Biol. 38, 2151–2163.

  • Zimmermann, R., Strauss, J.G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A., et al. (2004). Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386.

  • Zirin, J., Nieuwenhuis, J., and Perrimon, N. (2013). Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. PLoS Biol. 11, e1001708.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


Journal + Issues

Biological Chemistry keeps you up-to-date with the latest advances in the molecular life sciences. The journal publishes Research Articles, Short Communications, Reviews and Minireviews. Areas include: general biochemistry/pathobiochemistry, structural biology, molecular and cellular biology, genetics and epigenetics, virology, molecular medicine, plant molecular biology/biochemistry and novel experimental methodologies.

Search