TGF-β requires the activation of canonical and non-canonical signalling pathways to induce skeletal muscle atrophy

Johanna Ábrigo 1 , 2 , Fabian Campos 1 , 2 , Felipe Simon 1 , 2 , Claudia Riedel 1 , 2 , Daniel Cabrera 3 , 4 , Cristian Vilos 5 , 6  and Claudio Cabello-Verrugio 2 , 7
  • 1 Departamento de Ciencias Biológicas, Avenida República 239, Santiago 8370146, Chile
  • 2 Millennium Institute on Immunology and Immunotherapy, 8331150 Santiago, Chile
  • 3 Universidad Bernardo O Higgins, Facultad de Salud, 8370993 Santiago, Chile
  • 4 Departamento de Gastroenterología, Facultad de Medicina, 8331150 Santiago, Chile
  • 5 Laboratory of Nanomedicine and Targeted Delivery, Center for Integrative Medicine and Innovative Science, Faculty of Medicine, and Center for Bioinformatics and Integrative Biology, Faculty of Biological Sciences, 8370146 Santiago, Chile
  • 6 Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170022 Santiago, Chile
  • 7 Laboratory of Muscle Pathology, Fragility and Aging, Avenida República 239, Santiago 8370146, Chile
Johanna Ábrigo
  • Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello, Avenida República 239, Santiago 8370146, Chile
  • Millennium Institute on Immunology and Immunotherapy, 8331150 Santiago, Chile
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Fabian Campos
  • Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello, Avenida República 239, Santiago 8370146, Chile
  • Millennium Institute on Immunology and Immunotherapy, 8331150 Santiago, Chile
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Felipe Simon
  • Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello, Avenida República 239, Santiago 8370146, Chile
  • Millennium Institute on Immunology and Immunotherapy, 8331150 Santiago, Chile
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Claudia Riedel
  • Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello, Avenida República 239, Santiago 8370146, Chile
  • Millennium Institute on Immunology and Immunotherapy, 8331150 Santiago, Chile
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Daniel Cabrera
  • Universidad Bernardo O Higgins, Facultad de Salud, Departamento de Ciencias Químicas y Biológicas, 8370993 Santiago, Chile
  • Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Cristian Vilos
  • Laboratory of Nanomedicine and Targeted Delivery, Center for Integrative Medicine and Innovative Science, Faculty of Medicine, and Center for Bioinformatics and Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, 8370146 Santiago, Chile
  • Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, 9170022 Santiago, Chile
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Claudio Cabello-Verrugio
  • Corresponding author
  • Millennium Institute on Immunology and Immunotherapy, 8331150 Santiago, Chile
  • Laboratory of Muscle Pathology, Fragility and Aging, Departmento de Ciencias Biológicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello, Avenida República 239, Santiago 8370146, Chile
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

The transforming growth factor type-beta (TGF-β) induces skeletal muscle atrophy characterised by a decrease in the fibre’s diameter and levels of myosin heavy chain (MHC), also as an increase of MuRF-1 expression. In addition, TGF-β induces muscle atrophy by a mechanism dependent on reactive oxygen species (ROS). TGF-β signals by activating both canonical Smad-dependent, and non-canonical signalling pathways such as ERK1/2, JNK1/2, and p38 MAPKs. However, the participation of canonical and non-canonical signalling pathways in the TGF-β atrophic effect on skeletal muscle is unknown. We evaluate the impact of Smad and MAPK signalling pathways on the TGF-β-induced atrophic effect in C2C12 myotubes. The results indicate that TGF-β activates Smad2/3, ERK1/2 and JNK1/2, but not p38 in myotubes. The pharmacological inhibition of Smad3, ERK1/2 and JNK1/2 activation completely abolished the atrophic effect of TGF-β. Finally, the inhibition of these canonical and non-canonical pathways did not decrease the ROS increment, while the inhibition of ROS production entirely abolished the phosphorylation of Smad3, ERK1/2 and JNK1/2. These results suggest that TGF-β requires Smad3, ERK1/2 and JNK1/2 activation to produce skeletal muscle atrophy. Moreover, the induction of ROS by TGF-β is an upstream event to canonical and non-canonical pathways.

    • Supplementary material
  • Abrigo, J., Morales, M.G., Simon, F., Cabrera, D., Di Capua, G., and Cabello-Verrugio, C. (2015). Apocynin inhibits the upregulation of TGF-β1 expression and ROS production induced by TGF-beta in skeletal muscle cells. Phytomedicine 22, 885–93.

  • Abrigo, J., Rivera, J.C., Simon, F., Cabrera, D., and Cabello-Verrugio, C. (2016). Transforming growth factor type β (TGF-β) requires reactive oxygen species to induce skeletal muscle atrophy. Cell Signal. 28, 366–376.

  • Acuna, M.J., Pessina, P., Olguin, H., Cabrera, D., Vio, C.P., Bader, M., Munoz-Canoves, P., Santos, R.A., Cabello-Verrugio, C., and Brandan, E. (2014). Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-β signalling. Hum. Mol. Genet. 23, 1237–1249.

  • Argiles, J.M., Busquets, S., Felipe, A., and Lopez-Soriano, F.J. (2006). Muscle wasting in cancer and ageing: cachexia versus sarcopenia. Adv. Gerontol. 18, 39–54.

  • Barbieri, E. and Sestili, P. (2012). Reactive oxygen species in skeletal muscle signaling. J. Signal. Transduct. 2012, 982794.

  • Bennett, B.L., Sasaki, D.T., Murray, B.W., O’Leary, E.C., Sakata, S.T., Xu, W., Leisten, J.C., Motiwala, A., Pierce, S., Satoh, Y., et al. (2001). SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA 98, 13681–13686.

  • Bernasconi, P., Di Blasi, C., Mora, M., Morandi, L., Galbiati, S., Confalonieri, P., Cornelio, F., and Mantegazza, R. (1999). Transforming growth factor-β1 and fibrosis in congenital muscular dystrophies. Neuromuscul. Disord. 9, 28–33.

  • Brandan, E., Cabello-Verrugio, C., and Vial, C. (2008). Novel regulatory mechanisms for the proteoglycans decorin and biglycan during muscle formation and muscular dystrophy. Matrix Biol. 27, 700–708.

  • Brink, M., Price, S.R., Chrast, J., Bailey, J.L., Anwar, A., Mitch, W.E., and Delafontaine, P. (2001). Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I. Endocrinology 142, 1489–1496.

  • Burks, T.N. and Cohn, R.D. (2011). Role of TGF-beta signaling in inherited and acquired myopathies. Skelet. Muscle 1, 19.

  • Burks, T.N., Andres-Mateos, E., Marx, R., Mejias, R., Van Erp, C., Simmers, J.L., Walston, J.D., Ward, C.W., and Cohn, R.D. (2011). Losartan restores skeletal muscle remodeling and protects against disuse atrophy in sarcopenia. Sci. Transl. Med. 3, 82ra37.

  • Cabello-Verrugio, C. and Brandan, E. (2007). A novel modulatory mechanism of transforming growth factor-beta signaling through decorin and LRP-1. J. Biol. Chem. 282, 18842–18850.

  • Cabello-Verrugio, C., Acuna, M.J., Morales, M.G., Becerra, A., Simon, F., and Brandan, E. (2011). Fibrotic response induced by angiotensin-II requires NAD(P)H oxidase-induced reactive oxygen species (ROS) in skeletal muscle cells. Biochem. Biophys. Res. Commun. 410, 665–670.

  • Cabello-Verrugio, C., Cordova, G., and Salas, J.D. (2012a). Angiotensin II: role in skeletal muscle atrophy. Curr. Protein Pept. Sci. 13, 560–569.

  • Cabello-Verrugio, C., Santander, C., Cofre, C., Acuna, M.J., Melo, F., and Brandan, E. (2012b). The internal region leucine-rich repeat 6 of decorin interacts with low density lipoprotein receptor-related protein-1, modulates transforming growth factor (TGF)-β-dependent signaling, and inhibits TGF-β-dependent fibrotic response in skeletal muscles. J. Biol. Chem. 287, 6773–6787.

  • Cabello-Verrugio, C., Morales, M.G., Rivera, J.C., Cabrera, D., and Simon, F. (2015). Renin-angiotensin system: an old player with novel functions in skeletal muscle. Med. Res. Rev. 35, 437–463.

  • Cencetti, F., Bernacchioni, C., Nincheri, P., Donati, C., and Bruni, P. (2010). Transforming growth factor-beta1 induces transdifferentiation of myoblasts into myofibroblasts via up-regulation of sphingosine kinase-1/S1P3 axis. Mol. Biol. Cell. 21, 1111–1124.

  • Chomczynski, P. and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

  • Cofre, C., Acuna, M.J., Contreras, O., Morales, M.G., Riquelme, C., Cabello-Verrugio, C., and Brandan, E. (2015). Transforming growth factor type-beta inhibits Mas receptor expression in fibroblasts but not in myoblasts or differentiated myotubes; Relevance to fibrosis associated to muscular dystrophies. Biofactors 41, 111–120.

  • Cooney, R.N., Kimball, S.R., and Vary, T.C. (1997). Regulation of skeletal muscle protein turnover during sepsis: mechanisms and mediators. Shock 7, 1–16.

  • Derynck, R. and Zhang, Y.E. (2003). Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577–584.

  • Droguett, R., Cabello-Verrugio, C., Santander, C., and Brandan, E. (2010). TGF-β receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation. Exp. Cell Res. 316, 2487–2503.

  • Eley, H.L., Russell, S.T., and Tisdale, M.J. (2008). Mechanism of attenuation of muscle protein degradation induced by tumor necrosis factor-α and angiotensin II by β-hydroxy-β-methylbutyrate. Am. J. Physiol. Endocrinol. Metab. 295, E1417–E1426.

  • Evans, W.J., Morley, J.E., Argiles, J., Bales, C., Baracos, V., Guttridge, D., Jatoi, A., Kalantar-Zadeh, K., Lochs, H., Mantovani, G., et al. (2008). Cachexia: a new definition. Clin. Nutr. 27, 793–799.

  • Glass, D.J. (2005). Skeletal muscle hypertrophy and atrophy signaling pathways. Int. J. Biochem. Cell Biol. 37, 1974–1984.

  • Greco, S.H., Tomkotter, L., Vahle, A.K., Rokosh, R., Avanzi, A., Mahmood, S.K., Deutsch, M., Alothman, S., Alqunaibit, D., Ochi, A., et al. (2015). TGF-β blockade reduces mortality and metabolic changes in a validated murine model of pancreatic cancer cachexia. PLoS One 10, e0132786.

  • Guadagnin, E., Narola, J., Bonnemann, C.G., and Chen, Y.W. (2015). Tyrosine 705 phosphorylation of STAT3 is associated with phenotype severity in TGFβ1 transgenic mice. Biomed. Res. Int. 2015, 843743.

  • Huang, Z., Chen, D., Zhang, K., Yu, B., Chen, X., and Meng, J. (2007). Regulation of myostatin signaling by c-Jun N-terminal kinase in C2C12 cells. Cell Signal. 19, 2286–2295.

  • Ishitobi, M., Haginoya, K., Zhao, Y., Ohnuma, A., Minato, J., Yanagisawa, T., Tanabu, M., Kikuchi, M., and Iinuma, K. (2000). Elevated plasma levels of transforming growth factor β1 in patients with muscular dystrophy. Neuroreport 11, 4033–4035.

  • Jackman, R.W. and Kandarian, S.C. (2004). The molecular basis of skeletal muscle atrophy. Am J. Physiol. Cell Physiol. 287, C834–843.

  • Kefaloyianni, E., Gaitanaki, C., and Beis, I. (2006). ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-κB transactivation during oxidative stress in skeletal myoblasts. Cell Signal. 18, 2238–2251.

  • Kollias, H.D. and McDermott, J.C. (2008). Transforming growth factor-β and myostatin signaling in skeletal muscle. J. Appl. Physiol. 104, 579–587.

  • Massague, J. (2012). TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616–630.

  • Mauro, A., Ciccarelli, C., De Cesaris, P., Scoglio, A., Bouche, M., Molinaro, M., Aquino, A., and Zani, B.M. (2002). PKCα-mediated ERK, JNK and p38 activation regulates the myogenic program in human rhabdomyosarcoma cells. J. Cell Sci. 115, 3587–3599.

  • Mendias, C.L., Gumucio, J.P., Davis, M.E., Bromley, C.W., Davis, C.S., and Brooks, S.V. (2012). Transforming growth factor-β induces skeletal muscle atrophy and fibrosis through the induction of atrogin-1 and scleraxis. Muscle Nerve 45, 55–59.

  • Meneses, C., Morales, M.G., Abrigo, J., Simon, F., Brandan, E., and Cabello-Verrugio, C. (2015). The angiotensin-(1-7)/Mas axis reduces myonuclear apoptosis during recovery from angiotensin II-induced skeletal muscle atrophy in mice. Pflüger’s Arch. 467, 1975–1984.

  • Miro, O., Pedrol, E., Cebrian, M., Masanes, F., Casademont, J., Mallolas, J., and Grau, J.M. (1997). Skeletal muscle studies in patients with HIV-related wasting syndrome. J. Neurol. Sci. 150, 153–159.

  • Morales, M.G., Vazquez, Y., Acuna, M.J., Rivera, J.C., Simon, F., Salas, J.D., Alvarez Ruf, J., Brandan, E., and Cabello-Verrugio, C. (2012). Angiotensin II-induced pro-fibrotic effects require p38MAPK activity and transforming growth factor β1 expression in skeletal muscle cells. Int. J. Biochem. Cell Biol. 44, 1993–2002.

  • Morales, M.G., Abrigo, J., Meneses, C., Simon, F., Cisternas, F., Rivera, J.C., Vazquez, Y., and Cabello-Verrugio, C. (2014). The Ang-(1-7)/Mas-1 axis attenuates the expression and signalling of TGF-β1 induced by AngII in mouse skeletal muscle. Clin. Sci. 127, 251–264.

  • Morris, R.T., Spangenburg, E.E., and Booth, F.W. (2004). Responsiveness of cell signaling pathways during the failed 15-day regrowth of aged skeletal muscle. J. Appl. Physiol. 96, 398–404.

  • Narola, J., Pandey, S.N., Glick, A., and Chen, Y.W. (2013). Conditional expression of TGF-β1 in skeletal muscles causes endomysial fibrosis and myofibers atrophy. PLoS One 8, e79356.

  • Sartori, R., Milan, G., Patron, M., Mammucari, C., Blaauw, B., Abraham, R., and Sandri, M. (2009). Smad2 and 3 transcription factors control muscle mass in adulthood. Am. J. Physiol. Cell Physiol. 296, C1248–C1257.

  • Schmittgen, T.D., Zakrajsek, B.A., Mills, A.G., Gorn, V., Singer, M.J., and Reed, M.W. (2000). Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal. Biochem. 285, 194–204.

  • Tando, T., Hirayama, A., Furukawa, M., Sato, Y., Kobayashi, T., Funayama, A., Kanaji, A., Hao, W., Watanabe, R., Morita, M., et al. (2016). Smad2/3 are required for immobilization-induced skeletal muscle atrophy. J. Biol. Chem. 291, 12184–12194.

  • ten Dijke, P. and Hill, C.S. (2004). New insights into TGF-β-Smad signalling. Trends Biochem. Sci. 29, 265–273.

  • Tisdale, M.J. (2009). Mechanisms of cancer cachexia. Physiol. Rev. 89, 381–410.

  • Trendelenburg, A.U., Meyer, A., Rohner, D., Boyle, J., Hatakeyama, S., and Glass, D.J. (2009). Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am. J. Physiol. Cell Physiol. 296, C1258–C1270.

  • Winer, J., Jung, C.K., Shackel, I., and Williams, P.M. (1999). Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal. Biochem. 270, 41–49.

  • Zhang, P., Chen, X., and Fan, M. (2007). Signaling mechanisms involved in disuse muscle atrophy. Med. Hypotheses 6, 310–321.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


Journal + Issues

Biological Chemistry keeps you up-to-date with the latest advances in the molecular life sciences. The journal publishes Research Articles, Short Communications, Reviews and Minireviews. Areas include: general biochemistry/pathobiochemistry, structural biology, molecular and cellular biology, genetics and epigenetics, virology, molecular medicine, plant molecular biology/biochemistry and novel experimental methodologies.

Search