Biological and medical applications of plasma-activated media, water and solutions

Nagendra Kumar Kaushik 1 , Bhagirath Ghimire 1 , Ying Li 1 , Manish Adhikari 1 , Mayura Veerana 1 , Neha Kaushik 2 , Nayansi Jha 3 , Bhawana Adhikari 1 , Su-Jae Lee 2 , Kai Masur 4 , Thomas von Woedtke 4 , Klaus-Dieter Weltmann 4  and Eun Ha Choi 1
  • 1 Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
  • 2 Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
  • 3 Graduate School of Clinical Dentistry, Korea University, Seoul 02841, Republic of Korea
  • 4 Leibniz Institute for Plasma Science and Technology, D-17489 Greifswald, Germany
Nagendra Kumar Kaushik
  • Corresponding author
  • Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Bhagirath Ghimire
  • Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Ying Li
  • Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Manish Adhikari
  • Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Mayura Veerana
  • Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Neha Kaushik, Nayansi Jha
  • Graduate School of Clinical Dentistry, Korea University, Seoul 02841, Republic of Korea
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Bhawana Adhikari
  • Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Su-Jae Lee, Kai Masur, Thomas von Woedtke, Klaus-Dieter Weltmann and Eun Ha Choi
  • Corresponding author
  • Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics and Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Non-thermal atmospheric pressure plasma has been proposed as a new tool for various biological and medical applications. Plasma in close proximity to cell culture media or water creates reactive oxygen and nitrogen species containing solutions known as plasma-activated media (PAM) or plasma-activated water (PAW) – the latter even displays acidification. These plasma-treated solutions remain stable for several days with respect to the storage temperature. Recently, PAM and PAW have been widely studied for many biomedical applications. Here, we reviewed promising reports demonstrating plasma-liquid interaction chemistry and the application of PAM or PAW as an anti-cancer, anti-metastatic, antimicrobial, regenerative medicine for blood coagulation and even as a dental treatment agent. We also discuss the role of PAM on cancer initiation cells (spheroids or cancer stem cells), on the epithelial mesenchymal transition (EMT), and when used for metastasis inhibition considering its anticancer effects. The roles of PAW in controlling plant disease, seed decontamination, seed germination and plant growth are also considered in this review. Finally, we emphasize the future prospects of PAM, PAW or plasma-activated solutions in biomedical applications with a discussion of the mechanisms and the stability and safety issues in relation to humans.

  • Acquaah, G. (2007). Principles of Plant Genetics and Breeding (Chichester, UK: John Wiley & Sons, Ltd.).

  • Adachi, T., Tanaka, H., Nonomura, S., Hara, H., Kondo, S., and Hori, M. (2015). Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network. Free Radic. Biol. Med. 79, 28–44.

  • Akimoto, Y., Ikehara, S., Yamaguchi, T., Kim, J., Kawakami, H., Shimizu, N., Hori, M., Sakakita, H., and Ikehara, Y. (2016). Galectin expression in healing wounded skin treated with low-temperature plasma: comparison with treatment by electronical coagulation. Arch. Biochem. Biophys. 605, 86–94.

  • Andrian, E., Grenier, D., and Rouabhia, M. (2006). Porphyromonas gingivalis-epithelial cell interactions in periodontitis. J. Dent. Res. 85, 392–403.

  • Aruoma, O.I. (1998). Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 75, 199–212.

  • Attri, P., Kim, Y., Park, D., Park, J., Hong, Y., Uhm, H., Kim, K., Fridman, A., and Choi, E. (2015). Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Sci. Rep. 5, 9332.

  • Baek, E., Joh, H., Kim, S., and Chung, T. (2016). Effects of the electrical parameters and gas flow rate on the generation of reactive species in liquids exposed to atmospheric pressure plasma jets. Phys. Plasmas 23, 073515.

  • Baier, M., Foerster, J., Schnabel, U., Knorr, D., Ehlbeck, J., Herppich, W.B., and Schloter, O. (2013). Direct non-thermal plasma treatment for the sanitation of fresh corn salad leaves: evaluation of physical and physiological effects and antimicrobial efficacy. Postharvest Biol. Technol. 84, 81–87.

  • Barba-Espín, G., Hernández, J.A., and Diaz-Vivancos, P. (2012). Role of H2O2 in pea seed germination. Plant Signal. Behav. 7, 193–195.

  • Barkai-Golan, R. (2001). Postharvest Diseases of Fruits and Vegetables: Development and Control (Amsterdam, The Netherlands: Elsevier Science), pp. 25–32.

  • Bekeschus, S., Schmidt, A., Weltmann, K.-D., and von Woedtke, T. (2016). The plasma jet kINPen – a powerful tool for wound healing. Clin. Plasma Med. 4, 19–28.

  • Beuchat, L.R., Clavero, M.R., and Jaquette, C.B. (1997). Effect of nisin and temperature on survival, growth and enterotoxin production characteristics of psychotropic B. cereus in beef gravy. Appl. Environ. Microbiol. 63, 1953–1958.

  • Boehm, D., Curtin, J., Cullen, P.J., and Bourke, P. (2017). Hydrogen peroxide and beyond-the potential of high-voltage plasma-activated liquids against cancerous cells. Anti-Cancer Agents Med. Chem. 17, DOI: 10.2174/1871520617666170801110517. (Epub ahead of print).

  • Bowen, C.G., Greenwood, W., Guevara, P., and Washington, M.A. (2015). Effectiveness of a dental unit waterline treatment protocol with A-Dec ICX and Citrisil Disinfectants. Mil Med. 180, 1098–1104.

  • Braginsky, O., Vasilieva, A., Klopovskiy, K., Kovalev, A., Lopaev, D., Proshina, O., Rakhimova, T., and Rakhimov, A. (2005). Singlet oxygen generation in O2 flow excited by RF discharge: I. Homogeneous discharge mode: α-mode. J. Phys. D Appl. Phys. 38, 3609.

  • Brandenburg, R. (2017). Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci. Technol. 26, 053001.

  • Brisset, J. and Pawlat, J. (2016). Chemical effects of air plasma species on aqueous solutes in direct and delayed exposure modes: discharge, post-discharge and plasma activated water. Plasma Chem. Plasma Process. 36, 355–381.

  • Bruggeman, P. and Leys, C. (2009). Non-thermal plasmas in and in contact with liquids. J. Phys. D Appl. Phys. 42, 053001–053029.

  • Brune, B. (2003). Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ. 10, 864–869.

  • Burlica, R., Kirkpatrick, M.J., and Locke, B.R. (2006). Formation of reactive species in gliding arc discharges with liquid water. J. Electrostat. 64, 35–43.

  • Chauvin, J., Judée, F., Yousfi, M., Vicendo, P., and Merbahi, N. (2017). Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet. Sci. Rep. 7, 4562.

  • Chen, Z., Lin, L., Chenx X., Gjika E., and Keidar, M. (2016). Effects of cold atmospheric plasma generated in deionized water in cell cancer therapy. Plasma Process. Polym. 13, 1–6.

  • Chen, Z., Krasik, Y., Cousens, S., Ambujakshan, A., Corr, C., and Dai, X. (2017). Generation of underwater discharges inside gas bubbles using a 30-needles-to-plate electrode. J. Appl. Phys. 122, 153303.

  • Cheng, Y.U., Wu, C.H., Liu, C.T., Lin, C.Y., Chiang, H.P., Chen, T.W., Chen, C.Y., and Wu, J.S. (2017). Tooth bleaching by using a helium-based low-temperature atmospheric pressure plasma jet with saline solution. Plasma Process. Polym. 14, 1600235.

  • Dai, X., Corr, C., Ponraj, S., Maniruzzaman, M., Ambujakshan, A., Chen, Z., Kviz, L., Lovett, R., Rajmohan, G., Celis, D., et al. (2015). Efficient and selectable production of reactive species using a nanosecond pulsed discharge in gas bubbles in liquid. Plasma Process. Polym. 13, 306–310.

  • Dobrynin, D., Fridman, G., Friedman, G., and Fridman, A. (2009). Physical and biological mechanisms of plasma interaction with living tissue. New J. Phys. 11, 1–26.

  • Duan, J., Lu, X., and He, J. (2017). The selective effect of plasma activated medium in an in vitro co-culture of liver cancer and normal cells. J. Appl. Phys. 121, 013302.

  • Dvorak, P., Mrkvickova, M., Obrusnik, A., Kratzer, J., Dedina, J., and Prochazka, V. (2017). Fluorescence measurement of atomic oxygen concentration in a dielectric barrier discharge. Plasma Sources Sci. Technol. 26, 065020.

  • Ercan, U.K., Wang, H., Ji, H., Fridman, G., Brooks, A.D., and Joshi, S.G. (2013). Nonequilibrium plasma-activated antimicrobial solutions are broad-spectrum and retain their efficacies for extended period of time. Plasma Process. Polym. 10, 544–555.

  • Fridman, A., Chirokov, A., and Gutsol, A. (2005). Non-thermal atmospheric pressure discharges. J. Phys D Appl. Phys. 38, 1–24.

  • Fridman, G., Friedman, G., Gutsol, A., Shekhter, A.B., Vasilets, V.N., and Fridman, A. (2008). Applied plasma medicine. Plasma Process. Polym. 5, 503–533.

  • Friedline, A., Zachariah, M., Middauch, A., Heiser, M., Khanna, N., Vaishampayan, P., and Rice, C. (2015). Sterilization of hydrogen peroxide resistant bacterial spores with stabilized chlorine dioxide. AMB Express. 5, 24.

  • Fthollah, S., Mirpour, S., Mansouri, P., Dehpour, A., Ghoranneviss, M., Rahimi, N., Naraghi, Z., Chalangari, R., and Chalangari, K. (2016). Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats. Sci. Rep. 6, 19144.

  • Ghimire, B., Sornsakdanuphap, J., Hong, Y., Uhm, H., Weltmann, K., and Choi, E. (2017). The effect of the gap distance between an atmospheric-pressure plasma jet nozzle and liquid surface on OH and N2 species concentrations. Phys. Plasmas 24, 073502.

  • Girard, P., Arbabian, A., Fluery, M., Bauville, G., Puech, V., Dutreix, M., and Sousa, J. (2016). Synergistic effect of H2O2 and NO2 in cell death induced by cold atmospheric He plasma. Sci. Rep. 1, 29098.

  • Gorbanev, Y., O’Connell, D., and Chechik, V. (2016). Non-thermal plasma in contact with water: the origin of species. Chemistry 22, 10.

  • Graves, D.B. (2012). The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 45, 263001.

  • Guyader, P., Amgar, A., and Coignard, M. (1996) La désinfection. In: Microbiologie Alimentaire Tome 1 ed. C.M. Bourgeois, J.F. Mescle and J. Zucca, eds. (Paris: Tec et Doc Lavoisier), pp. 441–460.

  • Haertel, B., Woedtke, T., Weltmann, K., and Lindequist, U. (2014). Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomol. Ther. 22, 477–490.

  • Harrison, F.E. (2012). A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer’s disease. J. Alzheimers Dis. 29, 711–726.

  • Heinlin, J., Isbary, G., Stolz, W., Morfill, G., Landthaler, M., Shimizu, T., Steffes, B., Nosenko, T., Zimmermann, J., and Karrer, S. (2011). Plasma applications in medicine with a special focus on dermatology. J. Eur. Acad. Dermatol. Venereol. 25, 1–11.

  • Helmke, A., Hoffmeister, D., Berge, F., Emmert, S., Laspe, P., Mertens, N., Vioel, W., and Weltmann, K.D. (2011). Physical and microbiological characterisation of Staphylococcus epidermidis inactivation by dielectric barrier discharge plasma. Plasma Process. Polym. 8, 278–286.

  • Hong, S.J., Dawson, T.M., and Dawson, V.L. (2004). Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol. Sci. 25, 259–264.

  • Horiba, M., Kamiya, T., Hara, H., and Adachi, T. (2017). Cytoprotective effects of mild plasma-activated medium against oxidative stress in human skin fibroblasts. Sci. Rep. 7, e42208.

  • Horikoshi, S. and Serpone, N. (2017). In-liquid plasma: a novel tool in the fabrication of nanomaterials and in the treatment of wastewaters. RSC Adv. 7, 47196–47218.

  • Ikeda, J.I., Tanaka, H., Ishikawa, K., Sakakita, H., Ikehara, Y., and Hori, M. (2018). Plasma-activated medium (PAM) kills human cancer-initiating cells. Pathol. Int. 68, 23–30.

  • Ikehara, Y., Sakakita, H., Shimizu, N., Ikehara, S., and Nakanish, H. (2013). Formation of membrane-like structures in clotted blood by mild plasma treatment during hemostasis. J. Photopolym. Sci. Technol. 26, 555–557.

  • Io, T., Uchida, G., Nakajima, A., Takenaka, K., and Setsuhara, Y. (2016). Control of reactive oxygen and nitrogen species production in liquid by nonthermal plasma jet with controlled surrounding gas. Jpn. J. Appl. Phys. 56, 01AC06.

  • Iseki, S., Nakamura, K., Hayashi, M., Tanaka, H., Kondo, H., Kajiyama, H., Kano, H., Kikkawa, F., and Hori, M. (2012). Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl. Phys. Lett. 100, 113702.

  • Ishida, C., Mori, M., Nakamura, K., Tanaka, H., Mizuno, M., Hori, M., Iwase, A., Kikkawa, F., and Toyokuni, S. (2016). Non-thermal plasma prevents progression of endometriosis in mice. Free Rad. Res. 50, 1131–1139.

  • Ismael, S.Z., Khandaker, M.M., Mat, N., and Boyce, A.N. (2015). Effects of hydrogen peroxide on growth, development and quality of fruits: a review. J. Agron. 14, 331–336.

  • Jablonowski, H. and Woedtke, T.V. (2015). Research on plasma medicine-relevant plasma liquid interaction: what happened in the past five years? Clin. Plasma Med. 3, 42–52.

  • Janda, M., Sovits, V.M., Hensel, K., and Machala, Z. (2016). Generation of antimicrobial NOx by atmospheric air transient spark discharge. Plasma Chem. Plasma Process. 36, 767–781.

  • Jha, N., Ryu, J.J., Choi, E.H., and Kaushik, N.K. (2017). Generation and role of reactive oxygen and nitrogen species induced by plasma, lasers, chemical agents, and other systems in dentistry. Oxid. Med. Cell Longev. 2017, 7542540.

  • Joshi, S.G., Cooper, M., Yost, A., Paff, M., Ercan, U.K., Fridman, G., Friedman, G., Fridman, A., and Brooks, A.D. (2011). Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob. Agents Chemother. 55, 1053–1062.

  • Joslin, J., McCall, J.R., Bzdek, J., Johnson, D., and Hybertson, B. (2016). Aqueous plasma pharmacy: preparation methods, chemistry, and therapeutic applications. Plasma Med. 6, 135–177.

  • Judée, F., Fongia, C., Ducommun, F., Yousfi, M., Lobjois, V., and Merbahi, N. (2016). Short and long time effects of low temperature plasma activated media on 3D multicellular tumor spheroids. Sci. Rep. 6, 21421.

  • Judée, F., Simon, S., and Dufour, T. (2018). Plasma-activation of tap water using DBD for agronomy applications: identification and quantification of long lifetime chemical species and production/consumption mechanisms. Water Res. 133, 47–59.

  • Kalghatgi, S., Friedman, G., Fridman, A., and Clyne, A.M. (2010). Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Ann. Biomed. Eng. 38, 748–757.

  • Kamgang-Youbi, G., Herry, J.M., Bellon-Fontaine, M.N., Brisset, J.L., Doubla, A., and Naïtali, M. (2007). Evidence of temporal postdischarge decontamination of bacteria by gliding electric discharges: application to Hafnia alvei. Appl. Environ. Microbiol. 73, 4791–4796.

  • Kamgang-Youbi, G., Herry, J.M., Brisset, J.L., Bellon-Fontaine, M.N., Doubla, A., and Naïtali, M. (2008). Impact on disinfection efficiency of cell load and of planktonic/adherent/detached state: case of Hafnia alvei inactivation by plasma activated water. Appl. Microbiol. Biotechnol. 81, 449–457.

  • Kamgang-Youbi, G., Herry, J.M., Brisset, J.L., Bellon-Fontaine, M.N., Doubla, A., and Naıtali, M. (2009). Microbial inactivation using plasma-activated water obtained by gliding electric discharges. Lett. Appl. Microbiol. 48, 13–18.

  • Kang, Z.Q. (2016). The bleaching efficiency and bio-safety assessment of plasma activated water by low conc. H2O2. Global Thesis. 2016.

  • Kaushik, N.K., Kaushik, N., Yoo, K.C., Uddin, N., Kim, J.S., Lee, S.-J., and Choi, E.H. (2016). Low doses of PEG-coated gold nanoparticles sensitize solid tumors to cold plasma by blocking the PI3K/AKT-driven signaling axis to suppress cellular transformation by inhibiting growth and EMT. Biomaterials 87, 118–130.

  • Kawasaki, T., Kusumegi, S., Kudo, A., Sakanoshita, T., Tsurumaru, T., and Sato, A. (2016). Effects of gas flow rate on supply of reactive oxygen species into a target through liquid layer in cold plasma jet. IEEE Trans. Plasma Sci. 44, 3223.

  • Kayes, M.M., Critzer, F.J., Kelly-Wintenberg, K., Roth, J.R., Montie, T.C., and Golden, D.A. (2007). Inactivation of foodborne pathogens using a one atmosphere uniform glow discharge plasma. Foodborne Pathog. Dis. 4, 50–59.

  • Keidar, M., Shashurin, A., Volotskova, O., Stepp, M., Srinivasan, P., Sandler, A., and Trink, B. (2013). Cold atmospheric plasma in cancer therapy. Phys. Plasmas 20, 057101.

  • Kim, P.K., Zamora, R., Petrosko, P., and Billiar, T.R. (2001). The regulatory role of nitric oxide in apoptosis. Int. J. Immunopharmacol. 1, 1421–1441.

  • Kim, S.J., Chung, T.H., Bae, S.H., and Leem, S.H. (2009). Bacteria inactivation using atmospheric pressure single pin electrode microplasma jet with a group ring. Appl. Phys. Lett. 94, 141502.

  • Kim, Y., Hong, Y., Baik, K., Kwon, G., Choi, J. Cho, G, Uhm, H., Kim, D., and Choi, E. (2014). Measurement of reactive hydroxyl radical species inside the biosolutions during non-thermal atmospheric pressure plasma jet bombardment onto the solution. Plasma Chem. Plasma Process. 34, 457.

  • Kim, Y., Jin, S., Han, G., Kwon, G., Choi, J., Choi, E., Uhm, S., and Cho, G. (2015). Plasma apparatuses for biomedical applications. IEEE Trans. Plasma Sci. 43, 944.

  • King, D.A., Sheafor, M.W., and Hurst, J.K. (2006). Comparative toxicities of putative phagocyte-generated oxidizing radicals toward a bacterium (Escherichia coli) and a yeast (Saccharomyces cerevisiae). Free Radic. Biol. Med. 41, 765–774.

  • Knake, N., Reuter, S., Niemi, K., Schulz, V., and Winter, J. (2008). Absolute atomic oxygen density distributions in the effluent of a microscale atmospheric pressure plasma jet. J. Phys. D Appl. Phys. 41, 194006.

  • Koban, I., Holtfreter, B., Hübner, N.O., Matthes, R., Sietmann, R., Kindel, E., Weltmann, K.D., Welk, A., Kramer, A., and Kocher, T. (2011). Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro – proof of principle experiment. J. Clin. Periodontol. 38, 956–965.

  • Kolb, J.F., Mohamed, A.A.H., Price, R.O., Swanson, R.J., Bowman, A., Chiavarini, R.L., and Schoenbach, K.H. (2008). Cold atmospheric pressure air plasma jet for medical applications. Appl. Phys. Lett. 92, 241501.

  • Kostov, K., Machida, M., Prysiazhnyi, V., and Honda, R. (2015). Transfer of a cold atmospheric pressure plasma jet through a long flexible plastic tube. Plasma Sources Sci. Technol. 24, 025038.

  • Kumar, N., Park, J.H., Jeon, S.N., Park, B.S., Choi, E.H., and Attri, P. (2016). The action of microsecond-pulsed plasma-activated media on the inactivation of human lung cancer cells. J. Phys. D 49, 115401.

  • Kuninova, S., Zaviskova, K., Uherkova, L., Zablotskii, V., Churpita, O., Lunov, O., and Dejneka, A. (2017). Non-thermal air plasma promotes the healing of acute skin wounds in rats. Sci. Rep. 7, 45183.

  • Kuok, S.N. (2017). Theory of low-temperature physics. In: Springer Series on Atomic, Optical and Plasma Physics, Vol. 95. ISBN: 978-3-319-43719-4. DOI: 10.1007/978-3-319-43721-7.

  • Kurake, N., Tanaka, H., Ishikawa, K., Kondo, T., Sekine, M., Nakamura, K., Kajiyama, H., Kikkawa, F., Mizuno, M., and Hori, M. (2016). Cell survival of glioblastoma grown in medium containing hydrogen peroxide and/or nitrite, or in plasma-activated medium. Arch. Biochem. Biophys. 605, 102–108.

  • Kurake, N., Tanaka, H., Ishikawa, K., Takeda, K., Hashizume, H., Nakamura, K., Kajiyama, H, Kondo, T., Kikkawa, F., Mizuno, M., et al. (2017). Effects of ˙OH and ˙NO radicals in the aqueous phase on H2O2 and NO2 generated in plasma-activated medium. J. Phys. D Appl. Phys. 50, 155202.

  • Kurita, M., Shimizu, M., Sano, K., Nakajima, T., Yasuda, H., Takashima, K., and Mizuno, A. (2014). Radical reaction in aqueous media injected by atmospheric pressure plasma jet and protective effect of antioxidant reagents evaluated by single-molecule DNA measurement. Jap. J. Appl. Phys. 53, 05FR01.

  • Laroussi, M. (2002). Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Trans. Plasma Sci. 30, 1409–1455.

  • Laroussi, M. (2005). Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Process. Polym. 2, 391400.

  • Laroussi, M. and Leipold, F. (2004). Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int. J. Mass Spectrom. 233, 81–86.

  • Laroussi, M., Mendis, D.A., and Rosenberg, M. (2003). Plasma interaction with microbes. New J. Phys. 5, 41.1–41.10.

  • Laroussi, M., Lu, X., and Keidar, M. (2017). Perspective: the physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. J. Appl. Phys. 122, 020901. DOI: 10.1063/1.4993710.

  • Laurita, R., Barbieri, D., Gherardi, M., Colombo, V., and Lukes, P. (2015). Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma. Clin. Plasma Med. 3, 53–61.

  • Levko, D., Sharma, A., and Raja, L. (2016). Plasmas generated in bubbles immersed in liquids: direct current streamers versus microwave plasma. J. Phys. D Appl. Phys. 49, 285205.

  • Li, Y., Kang, M.H., Uhm, H.S., Lee, G.J., Choi, E.H., and Han, I. (2017a). Effects of atmospheric-pressure non-thermal bio-compatible plasma and plasma activated nitric oxide water on cervical cancer cells. Sci. Rep. 7, 45781.

  • Li, Y., Pan, J., Ye, G., Zhang, Q., Wang, J., Zhang, J., and Fang, J. (2017b). In vitro studies of the antimicrobial effect of non-thermal plasma-activated water as a novel mouthwash. Eur. J. Oral Sci. 125, 463–470.

  • Liebermann, D.A., Hoffman, B., and Steinman, R.A. (1995). Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene 11, 199–210.

  • Lin, A., Truong, B., Patel, S., Kaushik, N., Choi, E.H., Fridman, G., Fridman, A., and Miller, V. (2017). Nanosecond-pulsed DBD plasma-generated reactive oxygen species trigger immunogenic cell death in A549 lung carcinoma cells through intracellular oxidative stress. Int. J. Mol. Sci. 18, 966.

  • Linley, E., Denyer, S., McDonnell, G., Simons, C., and Maillard, J. (2012). Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. J. Antimicrob. Chemother. 67, 1589–1596.

  • Liu, D.X., Liu, Z.C., Chen, C. Yang, A.J., Li,D., Rong, M.Z., Chen, H.L., and Kong, M.G. (2016). Aqueous reactive species induced by a surface air discharge: heterogeneous mass transfer and liquid chemistry pathways. Sci. Rep. 6, 23737.

  • Lotfy, K. (2016). Cold atmospheric plasma and oxidative stress: reactive oxygen species vs. antioxidant. Austin Biochem. 1, 1001.

  • Lu, X., Jiang, Z., Xiong, Q., Tang, Z., and Pan, Y. (2008). A single electrode room-temperature plasma jet device for biomedical applications. Appl. Phys. Lett. 92, 151504.

  • Lu, T., Qiao, Y., and Liu, X. (2012a). Surface modification of biomaterials using plasma immersion ion implantation and deposition. Interface Focus 2, 325–336.

  • Lu, X., Laroussi, M., and Puech, V. (2012b). On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci. Technol. 21, 034005.

  • Lu, X., Naidis, G.V., Laroussi, M., Reuter, S., Graves, D.B., and Ostrikov, K. (2016). Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects. Phys. Rep. 630, 1–84.

  • Lukes, P., Brisset, J.L., and Locke, B.R. (2012). Biological effects of electrical discharge plasma in water and in gas-liquid environments. In: Plasma Chemistry and Catalysis in Gases and Liquids, pp. 309–352. ISBN: 9783527330065. DOI: 10.1002/9783527649525.ch8.

  • Lukes, P., Dolezalova, E., Sisrova, I., and Clupek, M. (2014). Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci. Technol. 23, 015019.

  • Ma, R., Feng, H., Li, F., Liang, Y., Zhang, Q., Zhu, W., Zhang, J., Becker, K.H., and Fang, J. (2012). An evaluation of anti-oxidative protection for cells against atmospheric pressure cold plasma treatment. Appl. Phys. Lett. 100, 12370.

  • Ma, R., Wang, G., Tian, Y., Wang, K., Zhang, J., and Fang, J. (2015). Non thermal plasma activated water inactivation of food borne pathogen on fresh produce. J. Hazard. Mat. 300, 643–651.

  • Ma, R., Yu, S., Tian, Y., Wang, K., Sun, C., Li, X., Zhang, J., Chen, K., and Fang, J. (2016). Effect of non-thermal plasma-activated water on fruit decay and quality in postharvest Chinese bayberries. Food Bioprod. Technol. 9, 1825–1834.

  • Maheux, S., Duday, D., Belmonte, T., Penny, C., Cauchie, H.M., Clément, F., and Choquet, P. (2015). Formation of ammonium in saline solution treated by nanosecond pulsed cold atmospheric microplasma: a route to fast inactivation of E. coli bacteria. RSC Adv. 5, 42135–42140.

  • Mancinelli, R. and Mckay, C. (1983). Effects of nitric oxide and nitrogen dioxide on bacterial growth. Appl. Environ. Microbiol. 46, 198–202.

  • Mann, M.S., Tiede, R., Gavenis, K., Daeschlein, G., Bussiahn, R., Weltmann, K.-D., Emmert, S., Woedtke, T.V., and Ahmed, R. (2016). Introduction to DIN-specification 91315 based on the characterization of the plasma jet kINPen® MED. Clin. Plasma Med. 4, 35–45.

  • Marder, E.P., Griffin, P.M., Cieslak, P.R., Dunn, J., Hurd, S., Jervis, R., Lathrop, S., Muse, A., Ryan P., Smith, K., et al. (2018). Preliminary incidence and trends of infections with pathogens transmitted commonly through food – foodborne diseases active surveillance network, 10 U.S. Sites, 2006–2017. Weekly 67, 324–328.

  • Matsumoto, R., Shimizu, K., Nagashima, T., Tanaka, H., Mizuno, M., Kikkawa, F., Hori, M., and Honda, H. (2016). Plasma-activated medium selectively eliminates undifferentiated. Regen. Ther. 5, 55–63.

  • Miyamoto, K., Ikehara, S., Takei, H., Akimoto, Y., Sakakita, H., Ishikawa, K., Ueda, M., Ikeda, J., Yamagishi, M., and Kim, J. (2016). Red blood cell coagulation induced by low-temperature plasma treatment. Arch. Biochem. Biophys. 605, 95–101.

  • Mohades, S., Laroussi, M., Sears, J., Barekzi, N., and Razavi, H. (2015). Evaluation of the effects of a plasma activated medium on cancer cells. Phys. Plasmas 22, 122001.

  • Mohades, S., Barekzi, N., Razavi, H., Maruthamuthu, V., and Laroussi, M. (2016a). Intraperitoneal administration of plasma-activated medium: proposal of a novel treatment option for peritoneal metastasis from gastric cancer. Plasma Process. Polym. 13, 12.

  • Mohades, S., Barekzi, N., Razavi, H., Maruthamuthu, V., and Laroussi, M. (2016b). Temporal evaluation of the anti-tumor efficiency of plasma-activated media. Plasma Process. Polym. 13, 1206.

  • Mohades, S., Laroussi, M., and Maruthamuthu, V. (2017). Moderate plasma activated media suppresses proliferation and migration of MDCK epithelial cells. J. Phys. D Appl. Phys. 50, 185205.

  • Moreau, M., Orange, N., and Feuilloley, M.G. (2008). Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol. Adv. 26, 610–617.

  • Morris, A.D., McCombs, G.B., Akan, T., Hynes, W., Laroussi, M., and Tolle, S.L. (2009). Cold plasma technology: bactericidal effects on Geobacillus stearothermophilus and Bacillus cereus microorganisms. J. Dent. Hyg. 83, 55–61.

  • Nagatsu, M., Terashita, F., Nonaka, H., Xu, L., Nagata, T., and Koide, Y. (2005). Effects of oxygen radicals in low-pressure surface wave plasma on sterilization. Appl. Phys. Lett. 86, 211502.

  • Naim, A.H. (2015). Influence of pre-sowing treatment with hydrogen peroxide on alleviation salinity stress impacts on cow pea germination and early seedling development. Asian J. Plant Sci. 5, 62–67.

  • Naïtali, M., Kamgang-Youbi, G., Herry, J.M., Bellon-Fontaine, M.-N., and Brisset, J.L. (2010). Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma-treated water. Appl. Environ. Microbiol. 76, 7662–7664.

  • Nakamura, K., Peng, Y., Utsumi, F., Tanaka, H., Mizuno, M., Toyokuni, M., Hori, M., Kikkawa, F., and Kajiyama, H. (2017). Novel intraperitoneal treatment with non-thermal plasma-activated medium inhibits metastatic potential of ovarian cancer cells. Sci. Rep. 7, 6085.

  • Narayanasamy, P. (2005). Postharvest Pathogens and Disease Management (Hoboken, USA: John Wiley & Sons Inc.).

  • Nikirov, A., Xiong, Q., Britun, N., Snyders, R., Lu, X., and Leys, C. (2011). Absolute concentration of OH radicals in atmospheric pressure glow discharges with a liquid electrode measured by laser-induced fluorescence spectroscopy. Appl. Phys. Express 4, 026102.

  • Ninomiya, K., Ishijima, T., Imamura, M., Yamahara, T., Enomoto, H., Takahashi, K., Tanaka Y., Uesugi, Y., and Shimizu, N. (2013). Evaluation of extra- and intracellular OH radical generation, cancer cell injury, and apoptosis induced by a non-thermal atmospheric-pressure plasma jet. J. Phys. D 46, 425401.

  • Nofel, M., Chauvin, J., Vicendo, P., and Judée, F. (2017). Effects of plasma activated medium on head and neck FaDu cancerous cells: comparison of 3D and 2D response. Anti-Cancer Agents Med. Chem. 17, DOI: 10.2174/1871520617666170801111055.

  • Norberg, S., Tian, W., Johnsen, E., and Kushner, M. (2014). Atmospheric pressure plasma jets interacting with liquid covered tissue: touching and not-touching the liquid. J. Phy. D: Appl. Phys. 47, 475203.

  • Oehmigen, K., Hahnel, M., Brandenburg, R., Wilke, C., Weltmann, K.D., and Von-Woedtke, T. (2010). The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process. Polym. 7, 250–257.

  • Oehmigen, K., Winter, J., Hahnel, M., Wilke, C., Brandenburg, R., Weltmann, K.D., and Von-Woedtke, T. (2011). Estimation of possible mechanisms of Escherichia coli inactivation by plasma treated sodium chloride solution. Plasma Process. Polym. 8, 904–913.

  • Oh, J., Szili, E., Ogawa, K., Short, R., Ito, M., Furuta, M., and Hatta, A. (2018). UV–vis spectroscopy study of plasma-activated water: dependence of the chemical composition on plasma exposure time and treatment distance. Jpn. J. Appl. Phys. 57, 0102B9.

  • Ouf, S.A., Mohamed, A.A.H., and El-Sayed, W.S. (2016). Fungal decontamination of fleshy fruit water washes by double atmospheric pressure cold plasma. Clean 44, 134–142.

  • Pan, J., Sun, K., Liang, Y.D., Sun, P., Yang, X.H., Wang, J., and Becker, K.H. (2013). Cold plasma therapy of a tooth root canal infected with Enterococcus faecalis biofilms in vitro. J. Endod. 39, 105–110.

  • Pan, J., Li, Y.L., Liu, C.M., Tian, Y., Yu, S., Wang, K.L., Zhang, J., and Fang, J. (2017). Investigation of cold atmospheric plasma-activated water for the dental unit waterline system contamination and safety evaluation in vitro. Plasma Chem. Plasma P. 37, 1091–1103.

  • Pankaj, S.K., Bueno-Ferrer, C., Misra, N.N., Milosavljevic, V., O’Donnell, C.P., Bourke, P., and Cullen, P.J. (2014). Applications of cold plasma technology in food packaging. Trends Food Sci. Technol. 35, 5–17.

  • Park, G.Y., Park, S.J., Choi, M.Y., Koo, I.G., Byun, J.H., Hong, J.W., Sim, J.Y., Collins, G.J., and Lee, J.K. (2012). Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci. Technol. 21, 043001.

  • Patel, R. (2005). Biofilms and antimicrobial resistance. Clin. Orthop. Relat. Res. 437, 41–47.

  • Pei, X., Lu, Y., Wu, S., Xiong, Q., and Lu, X. (2013). A study on the temporally and spatially resolved OH radical distribution of a room-temperature atmospheric-pressure plasma jet by laser-induced fluorescence imaging. Plasma Sources Sci. Tech. 22, 025023.

  • Peterson, P.E. (2003). World health report. Community Dent. Oral Epidemiol. 31, 3–24.

  • Raja Danasekaran, G.M. and Annadurai, K. (2014). Prevention of healthcare-associated infections: protecting patients, saving lives. Int. J. Community Med. Public Health 1, 67–68.

  • Rehman, M.U., Jawaid, P., Uchiyama, H., and Kondo, T. (2016). Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation. Arch. Biochem. Biophys. 605, 19–25.

  • Reuter, S., Niemi, K., Gathen, V., and Dobele, H. (2009). Generation of atomic oxygen in the effluent of an atmospheric pressure plasma jet. Plasma Sources Sci. Technol. 18, 015006.

  • Rumbach, P., Bartels, D.M., Sankaran, R.M., and Go, D.B. (2015). The solvation of electrons by an atmospheric-pressure plasma. Nat. Commun. 6, 7248.

  • Santos, D.M.F., Sequeira, C.A.C., and Figueiredo, J.L. (2013). Hydrogen production by alkaline water electrolysis. Quim. Nova. 36, 1176–1193.

  • Sato, Y., Yamada, S., Takeda, S., Hattori, N., Nakamura, K., Tanaka, H., Mizuno, M., Hori, M., and Kodera, Y. (2018). Effect of plasma-activated lactated ringer’s solution on pancreatic cancer cells in vitro and in vivo. Ann. Surg. Oncol. 25, 299–307.

  • Savary, S., Ficke, A., Aubertot, J.N., and Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Sec. 4, 519–537.

  • Shang, K., Li, J., Wang, X., Yao, D., Lu, N., Jiang, N., and Wu, Y. (2016). Evaluating the generation efficiency of hydrogen peroxide in water by pulsed discharge over water surface and underwater bubbling pulsed discharge. Jpn. J. Appl. Phys. 55, 01AB02.

  • Shashurin, A., Keidar, M., Bronnikov, S., Jurjus, R., and Stepp, M. (2008). Living tissue under treatment of cold plasma atmospheric jet. Appl. Phys. Lett. 93, 181501.

  • Shen, J., Tian, Y., Li, Y., Ma, R., Zhang, Q., Zhang, J., and Fang, J. (2016). Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Sci. Rep. 6, 28505.

  • Shi, L., Yu, L., Zou, F., Hu, H., Liu, K., and Lin, Z. (2017). Gene expression profiling and functional analysis reveals that p53 pathway-related gene expression is highly activated in cancer cells treated by cold atmospheric plasma-activated medium. Peer J. 5, e3751.

  • Siddique, S.S., Hardy, G.E. St. J., and Bayliss, K.L. (2018). Cold plasma: a potential new method to manage postharvest diseases caused by fungal plant pathogens. Plant Pathol. 10, 1–39.

  • Sivachandiran, L. and Khacef, A. (2017). Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Adv. 7, 1822–1832.

  • Srivastava, N. and Wang, C. (2011). Effects of water addition on OH radical generation and plasma properties in an atmospheric argon microwave plasma jet. J. App. Phys. 110, 053304.

  • Stewart, P.S. and Costerton, J.W. (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358, 135–138.

  • Su, X., Tian, Y., Zhou, H., Li, Y., Zhang, Z., Jiang, B., Yang, B., Zhang, J., and Fang, J. (2018). Inactivation efficacy of non-thermal plasma activated solutions against Newcastle disease virus. Appl. Environ. Microbiol. 84, e02836-17.

  • Sun, P., Wu, H., Bai, N., Zhou, H., Wang, R., Feng, H., Zhu, W., Zhang, J., and Fang, J. (2012). Inactivation of Bacillus subtilis spores in water by a direct-current, cold atmospheric-pressure air plasma microjet. Plasma Process. Polym. 9, 157–164.

  • Takaki, K., Takahata, J., Watanabe, S., Satta, N., Yamada, O., Fujio, T., and Sasaki, Y. (2013). Improvements in plant growth rate using underwater discharge. J. Phys. Conf. Ser. 418, 012140.

  • Takeda, S., Yamada, S., Hattori, N., Nakamura, K., Tanaka, H., Kajiyama, H., Kanda, M., Kobayashi, D., Tanaka, C., Fujii, T, et al. (2017). Intraperitoneal administration of plasma-activated medium: proposal of a novel treatment option for peritoneal metastasis from gastric cancer. Ann. Surg. Oncol. 24, 1188–1194.

  • Tanaka, H. (2012). Cell survival and proliferation signaling pathways are downregulated by plasma-activated medium in glioblastoma brain tumor cells. Plasma Med. 2, 207–220.

  • Tanaka, H., Mizuno, M., Ishikawa, K., Takeda, K., Nakamura, K., Utsumi, F., Kajiyama, H., Kano, H., Okazaki, Y., Toyokuni, S., et al. (2014). Plasma medical science for cancer therapy: towards cancer therapy using nonthermal atmospheric plasma. IEEE Trans. Plasma Sci. 42, 3760.

  • Tanaka, H., Mizuno, M., Toyokuni, S., Maruyama, S., Kodera, Y., Terasaki, H., Adachi, T., Kato, M., Kikkawa, F., and Hori, M. (2015a). Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density. Phys. Plasmas 22, 122003.

  • Tanaka, H., Mizuno, M., Ishikawa, K., Kondo, H., Takeda, K., Hashizume, H., Nakamura, K., Utsumi, F., Kajiyama, H., Kano, H., et al. (2015b). Plasma with high electron density and plasma-activated medium for cancer treatment. Clin. Plasma Med. 3, 71–76.

  • Tanaka, H., Nakamura, K., Mizuno, M., Ishikawa, K., Takeda, K., Kajiyama, H., Utsumi, F., Kikkawa, F., and Hori, M. (2016). Non-thermal atmospheric pressure plasma activates lactate in Ringer’s solution for anti-tumor effects. Sci. Rep. 6, 36282.

  • Thirumdas, R. (2018). Exploitation of cold plasma technology for enhancement of seed germination. Agri. Res. Tech. 13, 1–4.

  • Thiyagarajan, M., Sarani, A., and Nicula, C. (2013). Optical emission spectroscopic diagnostics of a non-thermal atmospheric pressure helium-oxygen plasma jet for biomedical applications. J. Appl. Phys. 113, 233302.

  • Toyokuni, S. (2016). The origin and future of oxidative stress pathology: from the recognition of carcinogenesis as an iron addiction with ferroptosis-resistance to non-thermal plasma therapy. Pathol. Int. 66, 245–259.

  • Traylor, M.J., Pavlovich, M.J., Karim, S., Hait, P., Sakiyama, Y., Clark, D.S., and Graves, D.B. (2011). Long-term antibacterial efficacy of air plasma-activated water. J. Phys. D Appl. Phys. 44, 472001.

  • Tredwin, C., Naik, S., Lewis, N., and Scully, C. (2006). Hydrogen peroxide tooth-whitening (bleaching) products: review of adverse effects and safety issues. Br. Dent. J. 200, 371–376.

  • Tresp, H., Hammer, M., Winter, J., Weltmann, K., and Reuter, S. (2013). Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy. J. Phys. D Appl. Phys. 46, 435401.

  • Tripathi, P. and Dubey, N. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol. Technol. 32, 235–245.

  • Troyano, A., Sancho, P., Fernandez, C., Blas, E., Bernardi, P., and Aller, P. (2003). The selection between apoptosis and necrosis is differentially regulated in hydrogen peroxide-treated and glutathione-depleted human promonocytic cells. Cell Death Differ. 10, 889–898.

  • Tsutsui, C., Lee, M., Takahashi, G., Murata, S., Hirata, T., Kanai, T., and Mori, A. (2014). Treatment of cardiac disease by inhalation of atmospheric pressure plasma. Jpn. J. Appl. Phys. 53, 060309.

  • Uchida, G., Nakajima, A., Ito, T., Takenaka, K., Kawasaki, T., Koga, K., Shiratani, M., and Setsuhara, Y. (2016). Effects of nonthermal plasma jet irradiation on the selective production of H2O2 and NO2 in liquid water. J. Appl. Phys. 120, 203302.

  • Uchida, G., Takenaka, K., Takeda, K., Ishikawa, K., Hori, M., and Setsuhara, Y. (2017). Selective production of reactive oxygen and nitrogen species in the plasma-treated water by using a nonthermal high-frequency plasma jet. Jpn. J. Appl. Phys. 57, 0102B4.

  • Ueda, M., Yamagami, D., Watanabe, K., Mori, A., Kimura, H., Sano, K., Saji, H., Ishikawa, K., Mori, M., Sakakita, H., et al. (2015). Histological and nuclear medical comparison of inflammation after hemostasis with non-thermal plasma and thermal coagulation. Plasma Process. Polym. 12, 1338–1342.

  • Uhm, H. (2015). Generation of various radicals in nitrogen plasma and their behavior in media. Phys. Plasmas 22, 123506.

  • United Nations, Department of Economic and Social Affairs, Population Division. (2015). World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.241.

  • Utsumi, F., Kajiyama, H., Nakamura, K., Tanaka, H., Mizuno, M., Ishikawa, K., Kondo, H., Kano, H., Hori, M., and Kikkawa, F. (2013). Effect of indirect non-equilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLoS One 8, e81576.

  • Van-Gils, C.A.J., Hofmann, S., Boekema, B.K.H.L., Brandenburg, R., and Bruggeman, P.J. (2013). Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. J. Phys. D Appl. Phys. 46, 1–14.

  • Verlackt, C., Boxem, W., and Bogaerts, A. (2018). Transport and accumulation of plasma generated species in aqueous solution. Phys. Chem. Chem. Phys. 20, 6845–6859.

  • Vlad, I.E. and Anghel, S.D. (2017). Time stability of water activated by different on-liquid atmospheric pressure plasmas. J. Electrostat. 87, 284–292.

  • Vyhnankova, E., Kozakova, Z., Krcma, F., and Hrdlicka, A. (2014). Influence of electrode material on hydrogen peroxide generation by DC pinhole discharge. Open Chem. 13, 218–223.

  • Wang, M., Holmes, B., Cheng, X., Zhu, W., Keidar, M., and Zhang, L.G. (2013). Cold atmospheric plasma for selectively ablating metastatic breast cancer cells. PLoS One 8, e73741.

  • Weller, R., Price, R.J., Ormerod, A.D., Benjamin, N., and Leifert, C. (2001). Microbial effect of acidified nitrite on dermatophyte fungi, Candida and bacterial skin pathogens. J. Appl. Microbiol. 90, 648–652.

  • Weltmann, K.-D. and von Woedtke, T. (2017). Plasma medicine – current state of research and medical application. Plasma Phys. Control. Fusion 59, 014031.

  • Winter, J., Brandenburg, R., and Weltmann, K. (2015). Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci. Technol. 24, 064001.

  • Xiang, J., Wan, C., Guo, R., and Guo, D. (2016). Is hydrogen peroxide a suitable apoptosis inducer for all cell types? BioMed. Res. Int. 2016, 7343965.

  • Xiong, Q., Yang, Z., and Bruggeman, P. (2015). Absolute OH density measurements in an atmospheric pressure dc glow discharge in air with water electrode by broadband UV absorption spectroscopy. J. Phys. D Appl. Phys. 48, 424008.

  • Xu, Y., Tian, Y., Mab, R., Liu, Q., and Zhang, J. (2016). Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chem. 197, 436–444.

  • Yan, D.Y., Sherman, J.H., Cheng X.Q., Ratovitski, E., Canady, J., and Keidar, M. (2014). Controlling plasma stimulated media in cancer treatment application. Appl. Phys. Lett. 105, 224101.

  • Yan, D., Talbot, A., Nourmohammadi, N., Sherman, J.H., Cheng, X., and Keidar, M. (2015). Toward understanding the selective anticancer capacity of cold atmospheric plasma – a model based on aquaporins. Biointerphases 10, 040801.

  • Yan, D., Cui, H., Zhu, W., Nourmohammadi, N., Milberg, J., Zhang, L.G., Sherman, J.H., and Keidar, M. (2017). The specific vulnerabilities of cancer cells to the cold atmospheric plasma-stimulated solutions. Sci. Rep. 7, 4479.

  • Ye, F., Kaneko, H., Nagasaka, Y., Ijima, R., Nakamura, K., Nagaya, M., Takayama, K., Kajiyama, H., Senga, T., Tanaka, H., et al. (2015). Plasma-activated medium suppresses choroidal neovascularization in mice: a new therapeutic concept for age-related macular degeneration. Sci. Rep. 5, 1–7.

  • Yousfi, M., Merbahi, N., Pathak, A., and Eichwald, O. (2014). Low-temperature plasmas at atmospheric pressure: toward new pharmaceutical treatments in medicine. Fundam. Clin. Pharmacol. 28, 123–135.

  • Yue, Y., Pei, X., and Lu, X. (2016a). OH density optimization in atmospheric-pressure plasma jet by using multiple ring electrodes. J. Appl. Phys. 119, 033301.

  • Yue, Y., Xian, Y., Pei, X., and Lu, X. (2016b). The effect of three different methods of adding O2 additive on O concentration of atmospheric pressure plasma jets (APPJs). Phys. Plasmas 23, 123503.

  • Zhang, Q., Sun, P., Feng, H., Wang, R., Liang, L., Zhu, W., Becker, K., Zhang, J., and Fang, J. (2012). Assessment of the role of various inactivation agents in an argon based direct current atmospheric pressure cold plasma jet. J. Appl. Phys. 111, 123305.

  • Zhang, Q., Liang, Y., Feng, H., Ma, R., Tian, Y., Zhang, J., and Fang, J. (2013). A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage. Appl. Phys. Lett. 102, 1–4.

  • Zhang, Q., Ma, R., Tian, Y., Su, B., Wang, K., Yu, S., Zhang, J., and Fang, J. (2016). Sterilization efficiency of a novel electrochemical disinfectant against Staphylococcus aureus. Environ. Sci. Technol. 50, 3184–3192.

  • Zhang, S., Rousseau, A., and Dufour, T. (2017). Promoting lentil germination and stem growth by plasma activated tap water, demineralized water and liquid fertilizer. RSC Adv. 7, 31244–31251.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Biological Chemistry keeps you up-to-date with the latest advances in the molecular life sciences. The journal publishes Research Articles, Short Communications, Reviews and Minireviews. Areas include: general biochemistry/pathobiochemistry, structural biology, molecular and cellular biology, genetics and epigenetics, virology, molecular medicine, plant molecular biology/biochemistry and novel experimental methodologies.

Search