More than just a pressure relief valve: physiological roles of volume-regulated LRRC8 anion channels

Lingye Chen 1 , Benjamin König 1 , Tianbao Liu 1 , Sumaira Pervaiz 1 , Yasmin S. Razzaque 1 ,  and Tobias Stauberhttp://orcid.org/https://orcid.org/0000-0003-0727-6109 1
  • 1 Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
Lingye Chen
  • Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Benjamin König
  • Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Tianbao Liu
  • Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Sumaira Pervaiz
  • Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Yasmin S. Razzaque
  • Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Tobias StauberORCID iD: https://orcid.org/0000-0003-0727-6109

Abstract

The volume-regulated anion channel (VRAC) is a key player in the volume regulation of vertebrate cells. This ubiquitously expressed channel opens upon osmotic cell swelling and potentially other cues and releases chloride and organic osmolytes, which contributes to regulatory volume decrease (RVD). A plethora of studies have proposed a wide range of physiological roles for VRAC beyond volume regulation including cell proliferation, differentiation and migration, apoptosis, intercellular communication by direct release of signaling molecules and by supporting the exocytosis of insulin. VRAC was additionally implicated in pathological states such as cancer therapy resistance and excitotoxicity under ischemic conditions. Following extensive investigations, 5 years ago leucine-rich repeat-containing family 8 (LRRC8) heteromers containing LRRC8A were identified as the pore-forming components of VRAC. Since then, molecular biological approaches have allowed further insight into the biophysical properties and structure of VRAC. Heterologous expression, siRNA-mediated downregulation and genome editing in cells, as well as the use of animal models have enabled the assessment of the proposed physiological roles, together with the identification of new functions including spermatogenesis and the uptake of antibiotics and platinum-based cancer drugs. This review discusses the recent molecular biological insights into the physiology of VRAC in relation to its previously proposed roles.

  • Abascal, F. and Zardoya, R. (2012). LRRC8 proteins share a common ancestor with pannexins, and may form hexameric channels involved in cell-cell communication. Bioessays 34, 551–560.

  • Akita, T. and Okada, Y. (2014). Characteristics and roles of the volume-sensitive outwardly rectifying (VSOR) anion channel in the central nervous system. Neuroscience 275C, 211–231.

  • Akita, T., Fedorovich, S.V., and Okada, Y. (2011). Ca2+ nanodomain-mediated component of swelling-induced volume-sensitive outwardly rectifying anion current triggered by autocrine action of ATP in mouse astrocytes. Cell. Physiol. Biochem. 28, 1181–1190.

  • Ashcroft, F.M. and Rorsman, P. (2013). K(ATP) channels and islet hormone secretion: new insights and controversies. Nat. Rev. Endocrinol. 9, 660–669.

  • Bach, M.D., Sørensen, B.H., and Lambert, I.H. (2018). Stress-induced modulation of volume-regulated anions channels in human alveolar carcinoma cells. Physiol. Rep. 6, e13869.

  • Bao, J., Perez, C.J., Kim, J., Zhang, H., Murphy, C.J., Hamidi, T., Jaubert, J., Platt, C.D., Chou, J., Deng, M., et al. (2018). Deficient LRRC8A-dependent volume-regulated anion channel activity is associated with male infertility in mice. JCI Insight 3, e99767.

  • Behe, P., Foote, J.R., Levine, A.P., Platt, C.D., Chou, J., Benavides, F., Geha, R.S., and Segal, A.W. (2017). The LRRC8A mediated “swell activated” chloride conductance is dispensable for vacuolar homeostasis in neutrophils. Front. Pharmacol. 8, 262.

  • Benfenati, V., Caprini, M., Nicchia, G.P., Rossi, A., Dovizio, M., Cervetto, C., Nobile, M., and Ferroni, S. (2009). Carbenoxolone inhibits volume-regulated anion conductance in cultured rat cortical astroglia. Channels 3, 323–336.

  • Best, L. and Brown, P.D. (2009). Studies of the mechanism of activation of the volume-regulated anion channel in rat pancreatic β-cells. J. Membr. Biol. 230, 83–91.

  • Best, L., Yates, A.P., Decher, N., Steinmeyer, K., and Nilius, B. (2004). Inhibition of glucose-induced electrical activity in rat pancreatic beta-cells by DCPIB, a selective inhibitor of volume-sensitive anion currents. Eur. J. Pharmacol. 489, 13–19.

  • Best, L., Brown, P.D., Sener, A., and Malaisse, W.J. (2010). Electrical activity in pancreatic islet cells: the VRAC hypothesis. Islets 2, 59–64.

  • Bortner, C.D. and Cidlowski, J.A. (1998). A necessary role for cell shrinkage in apoptosis. Biochem. Pharmacol. 56, 1549–1559.

  • Browe, D.M. and Baumgarten, C.M. (2006). EGFR kinase regulates volume-sensitive chloride current elicited by integrin stretch via PI-3K and NADPH oxidase in ventricular myocytes. J. Gen. Physiol. 127, 237–251.

  • Bugiani, M., Dubey, M., Breur, M., Postma, N.L., Dekker, M.P., Ter Braak, T., Boschert, U., Abbink, T.E.M., Mansvelder, H.D., Min, R., et al. (2017). Megalencephalic leukoencephalopathy with cysts: the Glialcam-null mouse model. Ann. Clin. Transl. Neurol. 4, 450–465.

  • Burow, P., Klapperstück, M., and Markwardt, F. (2015). Activation of ATP secretion via volume-regulated anion channels by sphingosine-1-phosphate in RAW macrophages. Pflüger’s Arch. 467, 1215–1226.

  • Cahalan, M.D. and Lewis, R.S. (1988). Role of potassium and chloride channels in volume regulation by T lymphocytes. Soc. Gen. Physiol. Ser. 43, 281–301.

  • Cai, S., Zhang, T., Zhang, D., Qiu, G., and Liu, Y. (2015). Volume-sensitive chloride channels are involved in cisplatin treatment of osteosarcoma. Mol. Med. Rep. 11, 2465–2470.

  • Cannon, C.L., Basavappa, S., and Strange, K. (1998). Intracellular ionic strength regulates the volume sensitivity of a swelling-activated anion channel. Am. J. Physiol. 275, C416–C422.

  • Catacuzzeno, L., Michelucci, A., Sforna, L., Aiello, F., Sciaccaluga, M., Fioretti, B., Castigli, E., and Franciolini, F. (2014). Identification of key signaling molecules involved in the activation of the swelling-activated chloride current in human glioblastoma cells. J. Membr. Biol. 247, 45–55.

  • Catalán, M.A., Kondo, Y., Peña-Münzenmayer, G., Jaramillo, Y., Liu, F., Choi, S., Crandall, E., Borok, Z., Flodby, P., Shull, G.E., et al. (2015). A fluid secretion pathway unmasked by acinar-specific Tmem16A gene ablation in the adult mouse salivary gland. Proc. Natl. Acad. Sci. U.S.A. 112, 2263–2268.

  • Chang, C.C., Chang, Y.S., Huang, H.Y., Yeh, K.T., Liu, T.C., and Chang, J.G. (2018). Determination of the mutational landscape in Taiwanese patients with papillary thyroid cancer by whole-exome sequencing. Hum. Pathol. 78, 151–158.

  • Choi, H., Ettinger, N., Rohrbough, J., Dikalova, A., Nguyen, H.N., and Lamb, F.S. (2016). LRRC8A channels support TNFalpha-induced superoxide production by Nox1 which is required for receptor endocytosis. Free Radic. Biol. Med. 101, 413–423.

  • Compan, V., Baroja-Mazo, A., López-Castejón, G., Gomez, A.I., Martínez, C.M., Angosto, D., Montero, M.T., Herranz, A.S., Bazán, E., Reimers, D., et al. (2012). Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 37, 487–500.

  • Deneka, D., Sawicka, M., Lam, A.K.M., Paulino, C., and Dutzler, R. (2018). Structure of a volume-regulated anion channel of the LRRC8 family. Nature 558, 254–259.

  • Elorza-Vidal, X., Sirisi, S., Gaitán-Peñas, H., Pérez-Rius, C., Alonso-Gardón, M., Armand-Ugón, M., Lanciotti, A., Brignone, M.S., Prat, E., Nunes, V., et al. (2018). GlialCAM/MLC1 modulates LRRC8/VRAC currents in an indirect manner: implications for megalencephalic leukoencephalopathy. Neurobiol. Dis. 119, 88–99.

  • Elorza-Vidal, X., Gaitán-Peñas, H., and Estévez, R. (2019). Chloride channels in astrocytes: structure, roles in brain homeostasis and implications in disease. Int. J. Mol. Sci. 20, 1034.

  • Emma, F., McManus, M., and Strange, K. (1997). Intracellular electrolytes regulate the volume set point of the organic osmolyte/anion channel VSOAC. Am. J. Physiol. 272, C1766–C1775.

  • Estevez, A.Y., Bond, T., and Strange, K. (2001). Regulation of ICl,swell in neuroblastoma cells by G protein signaling pathways. Am. J. Physiol. 281, C89–C98.

  • Feustel, P.J., Jin, Y., and Kimelberg, H.K. (2004). Volume-regulated anion channels are the predominant contributors to release of excitatory amino acids in the ischemic cortical penumbra. Stroke 35, 1164–1168.

  • Formaggio, F., Saracino, E., Mola, M.G., Rao, S.B., Amiry-Moghaddam, M., Muccini, M., Zamboni, R., Nicchia, G.P., Caprini, M., and Benfenati, V. (2019). LRRC8A is essential for swelling-activated chloride current and for regulatory volume decrease in astrocytes. FASEB J. 33, 101–113.

  • Friard, J., Tauc, M., Cougnon, M., Compan, V., Duranton, C., and Rubera, I. (2017). Comparative effects of chloride channel inhibitors on LRRC8/VRAC-mediated chloride conductance. Front. Pharmacol. 8, 328.

  • Fujii, Y., Maekawa, S., and Morita, M. (2017). Astrocyte calcium waves propagate proximally by gap junction and distally by extracellular diffusion of ATP released from volume-regulated anion channels. Sci. Rep. 7, 13115.

  • Fujii, T., Shimizu, T., Yamamoto, S., Funayama, K., Fujita, K., Tabuchi, Y., Ikari, A., Takeshima, H., and Sakai, H. (2018). Crosstalk between Na+,K+-ATPase and a volume-regulated anion channel in membrane microdomains of human cancer cells. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 3792–3804.

  • Gaitán-Peñas, H., Gradogna, A., Laparra-Cuervo, L., Solsona, C., Fernández-Dueñas, V., Barrallo-Gimeno, A., Ciruela, F., Lakadamyali, M., Pusch, M., and Estévez, R. (2016). Investigation of LRRC8-mediated volume-regulated anion currents in Xenopus oocytes. Biophys. J. 111, 1429–1443.

  • Gasull, X., Castany, M., Castellanos, A., Rezola, M., Andrés-Bilbé, A., Canut, M.I., Estévez, R., Borrás, T., and Comes, N. (2019). The LRRC8-mediated volume-regulated anion channel is altered in glaucoma. Sci. Rep. 9, 5392.

  • Ghosh, A., Khandelwal, N., Kumar, A., and Bera, A.K. (2017). Leucine-rich repeat-containing 8B protein is associated with the endoplasmic reticulum Ca2+ leak in HEK293 cells. J. Cell Sci. 130, 3818–3828.

  • Gradogna, A., Gaitán-Peñas, H., Boccaccio, A., Estévez, R., and Pusch, M. (2017a). Cisplatin activates volume sensitive LRRC8 channel mediated currents in Xenopus oocytes. Channels 11, 254–260.

  • Gradogna, A., Gavazzo, P., Boccaccio, A., and Pusch, M. (2017b). Subunit-dependent oxidative stress sensitivity of LRRC8 volume-regulated anion channels. J. Physiol. 595, 6719–6733.

  • Harrigan, T.J., Abdullaev, I.F., Jourd’heuil, D., and Mongin, A.A. (2008). Activation of microglia with zymosan promotes excitatory amino acid release via volume-regulated anion channels: the role of NADPH oxidases. J. Neurochem. 106, 2449–2462.

  • Hasegawa, Y., Shimizu, T., Takahashi, N., and Okada, Y. (2012). The apoptotic volume decrease is an upstream event of MAP kinase activation during staurosporine-induced apoptosis in HeLa cells. Int. J. Mol. Sci. 13, 9363–9379.

  • Hayashi, T., Nozaki, Y., Nishizuka, M., Ikawa, M., Osada, S., and Imagawa, M. (2011). Factor for adipocyte differentiation 158 gene disruption prevents the body weight gain and insulin resistance induced by a high-fat diet. Biol. Pharm. Bull. 34, 1257–1263.

  • Hazama, A., and Okada, Y. (1988). Ca2+ sensitivity of volume-regulatory K+ and Cl channels in cultured human epithelial cells. J. Physiol. 402, 687–702.

  • Hermoso, M., Olivero, P., Torres, R., Riveros, A., Quest, A.F., and Stutzin, A. (2004). Cell volume regulation in response to hypotonicity is impaired in HeLa cells expressing a protein kinase Cα mutant lacking kinase activity. J. Biol. Chem. 279, 17681–17689.

  • Hisadome, K., Koyama, T., Kimura, C., Droogmans, G., Ito, Y., and Oike, M. (2002). Volume-regulated anion channels serve as an auto/paracrine nucleotide release pathway in aortic endothelial cells. J. Gen. Physiol. 119, 511–520.

  • Hoffmann, E.K., Schettino, T., and Marshall, W.S. (2007). The role of volume-sensitive ion transport systems in regulation of epithelial transport. Comp. Biochem. Physiol. 148, 29–43.

  • Hoffmann, E.K., Lambert, I.H., and Pedersen, S.F. (2009). Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89, 193–277.

  • Hyzinski-García, M.C., Rudkouskaya, A., and Mongin, A.A. (2014). LRRC8A protein is indispensable for swelling-activated and ATP-induced release of excitatory amino acids in rat astrocytes. J. Physiol. 592, 4855–4862.

  • Inoue, H., Ohtaki, H., Nakamachi, T., Shioda, S., and Okada, Y. (2007). Anion channel blockers attenuate delayed neuronal cell death induced by transient forebrain ischemia. J. Neurosci. Res. 85, 1427–1435.

  • Ise, T., Shimizu, T., Lee, E.L., Inoue, H., Kohno, K., and Okada, Y. (2005). Roles of volume-sensitive Cl channel in cisplatin-induced apoptosis in human epidermoid cancer cells. J. Membr. Biol. 205, 139–145.

  • Jackson, P.S. and Strange, K. (1993). Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. Am. J. Physiol. 265, C1489–C1500.

  • Jackson, P.S., Morrison, R., and Strange, K. (1994). The volume-sensitive organic osmolyte-anion channel VSOAC is regulated by nonhydrolytic ATP binding. Am. J. Physiol. 267, C1203–C1209.

  • Jackson, P.S., Churchwell, K., Ballatori, N., Boyer, J.L., and Strange, K. (1996). Swelling-activated anion conductance in skate hepatocytes: regulation by cell Cl and ATP. Am. J. Physiol. 270, C57–C66.

  • Jentsch, T.J. (2016). VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nat. Rev. Mol. Cell. Biol. 17, 293–307.

  • Kalogeris, T., Baines, C.P., Krenz, M., and Korthuis, R.J. (2012). Cell biology of ischemia/reperfusion injury. Int. Rev. Cell. Mol. Biol. 298, 229–317.

  • Kang, C., Xie, L., Gunasekar, S.K., Mishra, A., Zhang, Y., Pai, S., Gao, Y., Kumar, A., Norris, A.W., Stephens, S.B., et al. (2018). SWELL1 is a glucose sensor regulating β-cell excitability and systemic glycaemia. Nat. Commun. 9, 367.

  • Kasuya, G., Nakane, T., Yokoyama, T., Jia, Y., Inoue, M., Watanabe, K., Nakamura, R., Nishizawa, T., Kusakizako, T., Tsutsumi, A., et al. (2018). Cryo-EM structures of the human volume-regulated anion channel LRRC8. Nat. Struct. Mol. Biol. 25, 797–804.

  • Kefauver, J.M., Saotome, K., Dubin, A.E., Pallesen, J., Cottrell, C.A., Cahalan, S.M., Qiu, Z., Hong, G., Crowley, C.S., Whitwam, T., et al. (2018). Structure of the human volume regulated anion channel. eLife 7, e38461.

  • Kenagy, R.D., Min, S.K., Mulvihill, E., and Clowes, A.W. (2011). A link between smooth muscle cell death and extracellular matrix degradation during vascular atrophy. J. Vasc. Surg. 54, 182–191.e124.

  • Kern, D.M., Oh, S., Hite, R.K., and Brohawn, S.G. (2019). Cryo-EM structures of the DCPIB-inhibited volume-regulated anion channel LRRC8A in lipid nanodiscs. eLife 8, e42636.

  • Kimelberg, H.K. (2005). Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 50, 389–397.

  • Kimelberg, H.K., Goderie, S.K., Higman, S., Pang, S., and Waniewski, R.A. (1990). Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J. Neurosci. 10, 1583–1591.

  • Kimelberg, H.K., Feustel, P.J., Jin, Y., Paquette, J., Boulos, A., Keller Jr., R.W., and Tranmer, B.I. (2000). Acute treatment with tamoxifen reduces ischemic damage following middle cerebral artery occlusion. Neuroreport 11, 2675–2679.

  • Kirk, K., Ellory, J.C., and Young, J.D. (1992). Transport of organic substrates via a volume-activated channel. J. Biol. Chem. 267, 23475–23478.

  • Kittl, M., Dobias, H., Beyreis, M., Kiesslich, T., Mayr, C., Gaisberger, M., Ritter, M., Kerschbaum, H.H., and Jakab, M. (2018). Glycine induces migration of microglial BV-2 cells via SNAT-mediated cell swelling. Cell. Physiol. Biochem. 50, 1460–1473.

  • Klausen, T.K., Bergdahl, A., Hougaard, C., Christophersen, P., Pedersen, S.F., and Hoffmann, E.K. (2007). Cell cycle-dependent activity of the volume- and Ca2+-activated anion currents in Ehrlich lettre ascites cells. J. Cell. Physiol. 210, 831–842.

  • König, B. and Stauber, T. (2019). Biophysics and structure-function relationships of LRRC8-formed volume-regulated anion channels. Biophys. J. 116, 1185–1193.

  • Kumagai, K., Toyoda, F., Staunton, C.A., Maeda, T., Okumura, N., Matsuura, H., Matsusue, Y., Imai, S., and Barrett-Jolley, R. (2016). Activation of a chondrocyte volume-sensitive Cl conductance prior to macroscopic cartilage lesion formation in the rabbit knee anterior cruciate ligament transection osteoarthritis model. Osteoarthr. Cartil. 24, 1786–1794.

  • Kumar, L., Chou, J., Yee, C.S., Borzutzky, A., Vollmann, E.H., von Andrian, U.H., Park, S.Y., Hollander, G., Manis, J.P., Poliani, P.L., et al. (2014). Leucine-rich repeat containing 8A (LRRC8A) is essential for T lymphocyte development and function. J. Exp. Med. 211, 929–942.

  • Kunzelmann, K. (2016). Ion channels in regulated cell death. Cell. Mol. Life Sci. 73, 2387–2403.

  • Lalouette, A., Lablack, A., Guenet, J.L., Montagutelli, X., and Segretain, D. (1996). Male sterility caused by sperm cell-specific structural abnormalities in ebouriffe, a new mutation of the house mouse. Biol. Reprod. 55, 355–363.

  • Lang, F. and Hoffmann, E.K. (2012). Role of ion transport in control of apoptotic cell death. Compr. Physiol. 2, 2037–2061.

  • Lang, F., Busch, G.L., Ritter, M., Volkl, H., Waldegger, S., Gulbins, E., and Haussinger, D. (1998). Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78, 247–306.

  • Lang, F., Shumilina, E., Ritter, M., Gulbins, E., Vereninov, A., and Huber, S.M. (2006). Ion channels and cell volume in regulation of cell proliferation and apoptotic cell death. Contrib. Nephrol. 152, 142–160.

  • Lee, E.L., Shimizu, T., Ise, T., Numata, T., Kohno, K., and Okada, Y. (2007). Impaired activity of volume-sensitive Cl channel is involved in cisplatin resistance of cancer cells. J. Cell. Physiol. 211, 513–521.

  • Lee, C.C., Freinkman, E., Sabatini, D.M., and Ploegh, H.L. (2014). The protein synthesis inhibitor blasticidin s enters mammalian cells via leucine-rich repeat-containing protein 8D. J. Biol. Chem. 289, 17124–17131.

  • Levitan, I., Christian, A.E., Tulenko, T.N., and Rothblat, G.H. (2000). Membrane cholesterol content modulates activation of volume-regulated anion current in bovine endothelial cells. J. Gen. Physiol. 115, 405–416.

  • Liang, W., Huang, L., Zhao, D., He, J.Z., Sharma, P., Liu, J., Gramolini, A.O., Ward, M.E., Cho, H.C., and Backx, P.H. (2014). Swelling-activated Cl- currents and intracellular CLC-3 are involved in proliferation of human pulmonary artery smooth muscle cells. J. Hypertens. 32, 318–330.

  • Liu, H.T., Tashmukhamedov, B.A., Inoue, H., Okada, Y., and Sabirov, R.Z. (2006). Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Glia 54, 343–357.

  • Liu, H.T., Akita, T., Shimizu, T., Sabirov, R.Z., and Okada, Y. (2009). Bradykinin-induced astrocyte-neuron signalling: glutamate release is mediated by ROS-activated volume-sensitive outwardly rectifying anion channels. J. Physiol. 587, 2197–2209.

  • Lück, J.C., Puchkov, D., Ullrich, F., and Jentsch, T.J. (2018). LRRC8/VRAC anion channels are required for late stages of spermatid development in mice. J. Biol. Chem. 293, 11796–11808.

  • Lutter, D., Ullrich, F., Lueck, J.C., Kempa, S., and Jentsch, T.J. (2017). Selective transport of neurotransmitters and modulators by distinct volume-regulated LRRC8 anion channels. J. Cell Sci. 130, 1122–1133.

  • Maeno, E., Ishizaki, Y., Kanaseki, T., Hazama, A., and Okada, Y. (2000). Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl. Acad. Sci. U.S.A. 97, 9487–9492.

  • Manolopoulos, V.G., Liekens, S., Koolwijk, P., Voets, T., Peters, E., Droogmans, G., Lelkes, P.I., De Clercq, E., and Nilius, B. (2000). Inhibition of angiogenesis by blockers of volume-regulated anion channels. Gen. Pharmacol. 34, 107–116.

  • Mao, J., Wang, L., Fan, A., Wang, J., Xu, B., Jacob, T.J., and Chen, L. (2007). Blockage of volume-activated chloride channels inhibits migration of nasopharyngeal carcinoma cells. Cell. Physiol. Biochem. 19, 249–258.

  • Miley, H.E., Sheader, E.A., Brown, P.D., and Best, L. (1997). Glucose-induced swelling in rat pancreatic beta-cells. J. Physiol. 504, 191–198.

  • Miley, H.E., Brown, P.D., and Best, L. (1999). Regulation of a volume-sensitive anion channel in rat pancreatic beta-cells by intracellular adenine nucleotides. J. Physiol. 515, 413–417.

  • Min, X.J., Li, H., Hou, S.C., He, W., Liu, J., Hu, B., and Wang, J. (2011). Dysfunction of volume-sensitive chloride channels contributes to cisplatin resistance in human lung adenocarcinoma cells. Exp. Biol. Med. 236, 483–491.

  • Mongin, A.A. (2016). Volume-regulated anion channel – a frenemy within the brain. Pflüger’s Arch. 468, 421–441.

  • Mongin, A.A. and Kimelberg, H.K. (2002). ATP potently modulates anion channel-mediated excitatory amino acid release from cultured astrocytes. Am. J. Physiol. 283, C569–C578.

  • Mongin, A.A. and Orlov, S.N. (2001). Mechanisms of cell volume regulation and possible nature of the cell volume sensor. Pathophysiology 8, 77–88.

  • Netti, V., Pizzoni, A., Perez-Dominguez, M., Ford, P., Pasantes-Morales, H., Ramos-Mandujano, G., and Capurro, C. (2018). Release of taurine and glutamate contributes to cell volume regulation in human retinal Muller cells: differences in modulation by calcium. J. Neurophysiol. 120, 973–984.

  • Nilius, B. and Droogmans, G. (2001). Ion channels and their functional role in vascular endothelium. Physiol. Rev. 81, 1415–1459.

  • Nilius, B., Sehrer, J., Viana, F., De Greef, C., Raeymaekers, L., Eggermont, J., and Droogmans, G. (1994). Volume-activated Cl currents in different mammalian non-excitable cell types. Pflüger’s Arch. 428, 364–371.

  • Nilius, B., Eggermont, J., Voets, T., Buyse, G., Manolopoulos, V., and Droogmans, G. (1997a). Properties of volume-regulated anion channels in mammalian cells. Prog. Biophys. Mol. Biol. 68, 69–119.

  • Nilius, B., Prenen, J., Kamouchi, M., Viana, F., Voets, T., and Droogmans, G. (1997b). Inhibition by mibefradil, a novel calcium channel antagonist, of Ca2+- and volume-activated Cl channels in macrovascular endothelial cells. Br. J. Pharmacol. 121, 547–555.

  • Nilius, B., Prenen, J., Voets, T., Eggermont, J., and Droogmans, G. (1998). Activation of volume-regulated chloride currents by reduction of intracellular ionic strength in bovine endothelial cells. J. Physiol. 506, 353–361.

  • Oiki, S., Kubo, M., and Okada, Y. (1994). Mg2+ and ATP-dependence of volume-sensitive Cl channels in human epithelial cells. Jpn. J. Physiol. 44 (Suppl. 2), S77–S79.

  • Okada, Y., Shimizu, T., Maeno, E., Tanabe, S., Wang, X., and Takahashi, N. (2006). Volume-sensitive chloride channels involved in apoptotic volume decrease and cell death. J. Membr. Biol. 209, 21–29.

  • Okada, Y., Sato, K., and Numata, T. (2009). Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel. J. Physiol. 587, 2141–2149.

  • Okada, T., Islam, M.R., Tsiferova, N.A., Okada, Y., and Sabirov, R.Z. (2017). Specific and essential but not sufficient roles of LRRC8A in the activity of volume-sensitive outwardly rectifying anion channel (VSOR). Channels 11, 109–120.

  • Okada, Y., Okada, T., Sato-Numata, K., Islam, M.R., Ando-Akatsuka, Y., Numata, T., Kubo, M., Shimizu, T., Kurbannazarova, R.S., Marunaka, Y., et al. (2019). Cell volume-activated and volume-correlated anion channels in mammalian cells: their biophysical, molecular, and pharmacological properties. Pharmacol. Rev. 71, 49–88.

  • Orlov, S.N., Platonova, A.A., Hamet, P., and Grygorczyk, R. (2013). Cell volume and monovalent ion transporters: their role in cell death machinery triggering and progression. Am. J. Physiol. 305, C361–C372.

  • Orre, L.M., Vesterlund, M., Pan, Y., Arslan, T., Zhu, Y., Fernandez Woodbridge, A., Frings, O., Fredlund, E., and Lehtio, J. (2019). SubCellBarCode: proteome-wide mapping of protein localization and relocalization. Mol. Cell. 73, 166–182 e167.

  • Osei-Owusu, J., Yang, J., Vitery, M.D.C., and Qiu, Z. (2018). Molecular biology and physiology of volume-regulated anion channel (VRAC). Curr. Top. Membr. 81, 177–203.

  • Patel, A.J., Lauritzen, I., Lazdunski, M., and Honore, E. (1998). Disruption of mitochondrial respiration inhibits volume-regulated anion channels and provokes neuronal cell swelling. J. Neurosci. 18, 3117–3123.

  • Pedersen, S.F., Hoffmann, E.K., and Mills, J.W. (2001). The cytoskeleton and cell volume regulation. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 130, 385–399.

  • Pedersen, S.F., Klausen, T.K., and Nilius, B. (2015). The identification of a volume-regulated anion channel: an amazing Odyssey. Acta Physiol. 213, 868–881.

  • Pedersen, S.F., Okada, Y., and Nilius, B. (2016). Biophysics and physiology of the volume-regulated anion channel (VRAC)/volume-sensitive outwardly rectifying anion channel (VSOR). Pflüger’s Arch. 468, 371–383.

  • Piepoli, A., Palmieri, O., Maglietta, R., Panza, A., Cattaneo, E., Latiano, A., Laczko, E., Gentile, A., Carella, M., Mazzoccoli, G., et al. (2012). The expression of leucine-rich repeat gene family members in colorectal cancer. Exp. Biol. Med. 237, 1123–1128.

  • Planells-Cases, R., Lutter, D., Guyader, C., Gerhards, N.M., Ullrich, F., Elger, D.A., Kucukosmanoglu, A., Xu, G., Voss, F.K., Reincke, S.M., et al. (2015). Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs. EMBO J. 34, 2993–3008.

  • Platt, C.D., Chou, J., Houlihan, P., Badran, Y.R., Kumar, L., Bainter, W., Poliani, P.L., Perez, C.J., Dent, S.Y.R., Clapham, D.E., et al. (2017). Leucine-rich repeat containing 8A (LRRC8A)-dependent volume-regulated anion channel activity is dispensable for T-cell development and function. J. Allergy Clin. Immunol. 140, 1651–1659 e1651.

  • Poletto Chaves, L.A. and Varanda, W.A. (2008). Volume-activated chloride channels in mice Leydig cells. Pflüger’s Arch. 457, 493–504.

  • Poulsen, K.A., Andersen, E.C., Hansen, C.F., Klausen, T.K., Hougaard, C., Lambert, I.H., and Hoffmann, E.K. (2010). Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: role of chloride channels. Am. J. Physiol. 298, C14–C25.

  • Prager-Khoutorsky, M. and Bourque, C.W. (2015). Mechanical basis of osmosensory transduction in magnocellular neurosecretory neurones of the rat supraoptic nucleus. J. Neuroendocrinol. 27, 507–515.

  • Qiu, Z., Dubin, A.E., Mathur, J., Tu, B., Reddy, K., Miraglia, L.J., Reinhardt, J., Orth, A.P., and Patapoutian, A. (2014). SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell 157, 447–458.

  • Roman, R.M., Bodily, K.O., Wang, Y., Raymond, J.R., and Fitz, J.G. (1998). Activation of protein kinase Calpha couples cell volume to membrane Cl permeability in HTC hepatoma and Mz-ChA-1 cholangiocarcinoma cells. Hepatology 28, 1073–1080.

  • Rorsman, P. and Braun, M. (2013). Regulation of insulin secretion in human pancreatic islets. Annu. Rev. Physiol. 75, 155–179.

  • Roy, G. (1995). Amino acid current through anion channels in cultured human glial cells. J. Membr. Biol. 147, 35–44.

  • Rubino, S., Bach, M.D., Schober, A.L., Lambert, I.H., and Mongin, A.A. (2018). Downregulation of leucine-rich repeat-containing 8A limits proliferation and increases sensitivity of glioblastoma to temozolomide and carmustine. Front. Oncol. 8, 142.

  • Rudkouskaya, A., Chernoguz, A., Haskew-Layton, R.E., and Mongin, A.A. (2008). Two conventional protein kinase C isoforms, alpha and beta I, are involved in the ATP-induced activation of volume-regulated anion channel and glutamate release in cultured astrocytes. J. Neurochem. 105, 2260–2270.

  • Sabirov, R.Z., Prenen, J., Tomita, T., Droogmans, G., and Nilius, B. (2000). Reduction of ionic strength activates single volume-regulated anion channels (VRAC) in endothelial cells. Pflüger’s Arch. 439, 315–320.

  • Sato-Numata, K., Numata, T., Inoue, R., Sabirov, R.Z., and Okada, Y. (2017). Distinct contributions of LRRC8A and its paralogs to the VSOR anion channel from those of the ASOR anion channel. Channels 11, 167–172.

  • Sawada, A., Takihara, Y., Kim, J.Y., Matsuda-Hashii, Y., Tokimasa, S., Fujisaki, H., Kubota, K., Endo, H., Onodera, T., Ohta, H., et al. (2003). A congenital mutation of the novel gene LRRC8 causes agammaglobulinemia in humans. J. Clin. Invest. 112, 1707–1713.

  • Schlichter, L.C., Sakellaropoulos, G., Ballyk, B., Pennefather, P.S., and Phipps, D.J. (1996). Properties of K+ and Cl channels and their involvement in proliferation of rat microglial cells. Glia 17, 225–236.

  • Schober, A.L., Wilson, C.S., and Mongin, A.A. (2017). Molecular composition and heterogeneity of the LRRC8-containing swelling-activated osmolyte channels in primary rat astrocytes. J. Physiol. 595, 6939–6951.

  • Schumacher, P.A., Sakellaropoulos, G., Phipps, D.J., and Schlichter, L.C. (1995). Small-conductance chloride channels in human peripheral T lymphocytes. J. Membr. Biol. 145, 217–232.

  • Schwab, A., Fabian, A., Hanley, P.J., and Stock, C. (2012). Role of ion channels and transporters in cell migration. Physiol. Rev. 92, 1865–1913.

  • Shimizu, T., Numata, T., and Okada, Y. (2004). A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl channel. Proc. Natl. Acad. Sci. USA. 101, 6770–6773.

  • Shimizu, T., Ohtake, H., Fujii, T., Tabuchi, Y., and Sakai, H. (2015). Volume-sensitive outwardly rectifying Cl channels contribute to butyrate-triggered apoptosis of murine colonic epithelial MCE301 cells. J. Physiol. Sci. 65, 151–157.

  • Sirianant, L., Wanitchakool, P., Ousingsawat, J., Benedetto, R., Zormpa, A., Cabrita, I., Schreiber, R., and Kunzelmann, K. (2016). Non-essential contribution of LRRC8A to volume regulation. Pflüger’s Arch. 468, 805–816.

  • Sørensen, B.H., Thorsteinsdottir, U.A., and Lambert, I.H. (2014). Acquired cisplatin resistance in human ovarian A2780 cancer cells correlates with shift in taurine homeostasis and ability to volume regulate. Am. J. Physiol. 307, C1071–C1080.

  • Sørensen, B.H., Dam, C.S., Sturup, S., and Lambert, I.H. (2016a). Dual role of LRRC8A-containing transporters on cisplatin resistance in human ovarian cancer cells. J. Inorg. Biochem. 160, 287–295.

  • Sørensen, B.H., Nielsen, D., Thorsteinsdottir, U.A., Hoffmann, E.K., and Lambert, I.H. (2016b). Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and caspase-9/-3 activation. Am. J. Physiol. 310, C857–C873.

  • Soroceanu, L., Manning, T.J., Jr., and Sontheimer, H. (1999). Modulation of glioma cell migration and invasion using Cl and K+ ion channel blockers. J. Neurosci. 19, 5942–5954.

  • Stauber, T. (2015). The volume-regulated anion channel is formed by LRRC8 heteromers – molecular identification and roles in membrane transport and physiology. Biol. Chem. 396, 975–990.

  • Strange, K., Emma, F., and Jackson, P.S. (1996). Cellular and molecular physiology of volume-sensitive anion channels. Am. J. Physiol. 270, C711–C730.

  • Strange, K., Yamada, T., and Denton, J.S. (2019). A 30-year journey from volume-regulated anion currents to molecular structure of the LRRC8 channel. J. Gen. Physiol. 151, 100–117.

  • Stroka, K.M., Jiang, H., Chen, S.H., Tong, Z., Wirtz, D., Sun, S.X., and Konstantopoulos, K. (2014). Water permeation drives tumor cell migration in confined microenvironments. Cell 157, 611–623.

  • Stuhlmann, T., Planells-Cases, R., and Jentsch, T.J. (2018). LRRC8/VRAC anion channels enhance beta-cell glucose sensing and insulin secretion. Nat. Commun. 9, 1974.

  • Syeda, R., Qiu, Z., Dubin, A.E., Murthy, S.E., Florendo, M.N., Mason, D.E., Mathur, J., Cahalan, S.M., Peters, E.C., Montal, M., et al. (2016). LRRC8 proteins form volume-regulated anion channels that sense ionic strength. Cell 164, 499–511.

  • Thorsteinsdottir, U.A., Thorsteinsdottir, M., and Lambert, I.H. (2016). Protolichesterinic acid, isolated from the lichen Cetraria islandica, reduces LRRC8A Expression and volume-sensitive release of organic osmolytes in human lung epithelial cancer cells. Phytother. Res. 30, 97–104.

  • Tilly, B.C., Edixhoven, M.J., Tertoolen, L.G., Morii, N., Saitoh, Y., Narumiya, S., and de Jonge, H.R. (1996). Activation of the osmo-sensitive chloride conductance involves P21rho and is accompanied by a transient reorganization of the F-actin cytoskeleton. Mol. Biol. Cell. 7, 1419–1427.

  • Tominaga, K., Kondo, C., Kagata, T., Hishida, T., Nishizuka, M., and Imagawa, M. (2004). The novel gene fad158, having a transmembrane domain and leucine-rich repeat, stimulates adipocyte differentiation. J. Biol. Chem. 279, 34840–34848.

  • Trothe, J., Ritzmann, D., Lang, V., Scholz, P., Pul, U., Kaufmann, R., Buerger, C., and Ertongur-Fauth, T. (2018). Hypotonic stress response of human keratinocytes involves LRRC8A as component of volume-regulated anion channels. Exp. Dermatol. 27, 1352–1360.

  • Trouet, D., Nilius, B., Jacobs, A., Remacle, C., Droogmans, G., and Eggermont, J. (1999). Caveolin-1 modulates the activity of the volume-regulated chloride channel. J. Physiol. 520, 113–119.

  • Ullrich, F., Reincke, S.M., Voss, F.K., Stauber, T., and Jentsch, T.J. (2016). Inactivation and anion selectivity of volume-regulated anion channels (VRACs) depend on C-terminal residues of the first extracellular loop. J. Biol. Chem. 291, 17040–17048.

  • Vakili, A., Hosseinzadeh, S.A., and Khorasani, M.Z. (2009). Peripheral administration of carbenoxolone reduces ischemic reperfusion injury in transient model of cerebral ischemia. J. Stroke Cerebrovasc. Dis. 18, 81–85.

  • Varela, D., Simon, F., Riveros, A., Jorgensen, F., and Stutzin, A. (2004). NAD(P)H oxidase-derived H2O2 signals chloride channel activation in cell volume regulation and cell proliferation. J. Biol. Chem. 279, 13301–13304.

  • Voets, T., Szucs, G., Droogmans, G., and Nilius, B. (1995). Blockers of volume-activated Cl currents inhibit endothelial cell proliferation. Pflüger’s Arch. 431, 132–134.

  • Voets, T., Manolopoulos, V., Eggermont, J., Ellory, C., Droogmans, G., and Nilius, B. (1998). Regulation of a swelling-activated chloride current in bovine endothelium by protein tyrosine phosphorylation and G proteins. J. Physiol. 506, 341–352.

  • Voets, T., Droogmans, G., Raskin, G., Eggermont, J., and Nilius, B. (1999). Reduced intracellular ionic strength as the initial trigger for activation of endothelial volume-regulated anion channels. Proc. Natl. Acad. Sci. USA. 96, 5298–5303.

  • Voss, F.K., Ullrich, F., Münch, J., Lazarow, K., Lutter, D., Mah, N., Andrade-Navarro, M.A., von Kries, J.P., Stauber, T., and Jentsch, T.J. (2014). Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344, 634–638.

  • Wang, R., Lu, Y., Gunasekar, S., Zhang, Y., Benson, C.J., Chapleau, M.W., Sah, R., and Abboud, F.M. (2017). The volume-regulated anion channel (LRRC8) in nodose neurons is sensitive to acidic pH. JCI Insight 2, e90632.

  • Wang, Y., Ren, F., Chen, P., Liu, S., Song, Z., and Ma, X. (2018). Identification of a six-gene signature with prognostic value for patients with endometrial carcinoma. Cancer Med. 7, 5632–5642.

  • Wong, R., Chen, W., Zhong, X., Rutka, J.T., Feng, Z.P., and Sun, H.S. (2018). Swelling-induced chloride current in glioblastoma proliferation, migration, and invasion. J. Cell. Physiol. 233, 363–370.

  • Xia, Y., Liu, Y., Xia, T., Li, X., Huo, C., Jia, X., Wang, L., Xu, R., Wang, N., Zhang, M., et al. (2016). Activation of volume-sensitive Cl channel mediates autophagy-related cell death in myocardial ischaemia/reperfusion injury. Oncotarget 7, 39345–39362.

  • Xiao, G.S., Zhang, Y.H., Wang, Y., Sun, H.Y., Baumgarten, C.M., and Li, G.R. (2018). Noradrenaline up-regulates volume-regulated chloride current by PKA-independent cAMP/exchange protein activated by cAMP pathway in human atrial myocytes. Br. J. Pharmacol. 175, 3422–3432.

  • Xie, L., Zhang, Y., Gunasekar, S.K., Mishra, A., Cao, L., and Sah, R. (2017). Induction of adipose and hepatic SWELL1 expression is required for maintaining systemic insulin-sensitivity in obesity. Channels 11, 673–677.

  • Xue, Y., Li, H., Zhang, Y., Han, X., Zhang, G., Li, W., Zhang, H., Lin, Y., Chen, P., Sun, X., et al. (2018). Natural and synthetic flavonoids, novel blockers of the volume-regulated anion channels, inhibit endothelial cell proliferation. Pflüger’s Arch. 470, 1473–1483.

  • Yamada, T. and Strange, K. (2018). Intracellular and extracellular loops of LRRC8 are essential for volume-regulated anion channel function. J. Gen. Physiol. 150, 1003–1015.

  • Yamada, T., Wondergem, R., Morrison, R., Yin, V.P., and Strange, K. (2016). Leucine-rich repeat containing protein LRRC8A is essential for swelling-activated Cl currents and embryonic development in zebrafish. Physiol. Rep. 4, e12940.

  • Yamamoto, S., Ichishima, K., and Ehara, T. (2008). Regulation of volume-regulated outwardly rectifying anion channels by phosphatidylinositol 3,4,5-trisphosphate in mouse ventricular cells. Biomed. Res. 29, 307–315.

  • Yang, C., He, L., Chen, G., Ning, Z., and Xia, Z. (2019a). LRRC8A potentiates temozolomide sensitivity in glioma cells via activating mitochondria-dependent apoptotic pathway. Hum. Cell 32, 41–50.

  • Yang, J., Vitery, M.D.C., Chen, J., Osei-Owusu, J., Chu, J., and Qiu, Z. (2019b). Glutamate-releasing SWELL1 channel in astrocytes modulates synaptic transmission and promotes brain damage in stroke. Neuron. 102, 813–827.

  • Yeung, C.H., Barfield, J.P., and Cooper, T.G. (2006). Physiological volume regulation by spermatozoa. Mol. Cell. Endocrinol. 250, 98–105.

  • Zhang, Y., Zhang, H., Feustel, P.J., and Kimelberg, H.K. (2008). DCPIB, a specific inhibitor of volume regulated anion channels (VRACs), reduces infarct size in MCAo and the release of glutamate in the ischemic cortical penumbra. Exp. Neurol. 210, 514–520.

  • Zhang, Y., Xie, L., Gunasekar, S.K., Tong, D., Mishra, A., Gibson, W.J., Wang, C., Fidler, T., Marthaler, B., Klingelhutz, A., et al. (2017). SWELL1 is a regulator of adipocyte size, insulin signalling and glucose homeostasis. Nat. Cell Biol. 19, 504–517.

  • Zhang, H., Deng, Z., Zhang, D., Li, H., Zhang, L., Niu, J., Zuo, W., Fu, R., Fan, L., Ye, J.H., et al. (2018). High expression of leucinerich repeat containing 8A is indicative of a worse outcome of colon cancer patients by enhancing cancer cell growth and metastasis. Oncol. Rep. 40, 1275–1286.

  • Zholos, A., Beck, B., Sydorenko, V., Lemonnier, L., Bordat, P., Prevarskaya, N., and Skryma, R. (2005). Ca2+- and volume-sensitive chloride currents are differentially regulated by agonists and store-operated Ca2+ entry. J. Gen. Physiol. 125, 197–211.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Biological Chemistry keeps you up-to-date with the latest advances in the molecular life sciences. The journal publishes Research Articles, Short Communications, Reviews and Minireviews. Areas include: general biochemistry/pathobiochemistry, structural biology, molecular and cellular biology, genetics and epigenetics, virology, molecular medicine, plant molecular biology/biochemistry and novel experimental methodologies.

Search