Structural Factor-Augmented VARs (SFAVARs) and the Effects of Monetary Policy

Francesco Belviso 1 , 1  and Fabio Milani 2 , 2
  • 1 Princeton University and University of Chicago, fbelviso@alumni.princeton.edu
  • 2 University of California, Irvine, fmilani@uci.edu

Factor-augmented VARs (FAVARs) have combined standard VARs with factor analysis to exploit large data sets in the study of monetary policy. FAVARs enjoy a number of advantages over VARs: they allow a better identification of the monetary policy shock; they avoid the use of a single variable to proxy theoretical constructs; they allow researchers to compute impulse responses for hundreds of variables. Their shortcoming, however, is that the factors are not identified and lack an economic interpretation.This paper seeks to provide an interpretation to the factors. We propose a novel Structural Factor-Augmented VAR (SFAVAR) model, where the factors have a clear meaning: Real Activity factor, Inflation factor, Financial Market factor, Credit factor, Expectations factor, and so forth. The paper employs a Bayesian approach to jointly estimate the factors and the dynamic model. This framework is then used to study the effects of monetary policy on a wide range of macroeconomic variables.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The B.E. Journal of Macroeconomics publishes significant research and scholarship in theoretical and applied macroeconomics. The range of topics includes business cycle research, economic growth, and monetary economics, as well as topics drawn from the substantial areas of overlap between macroeconomics and international economics, labor economics, finance, development economics, political economy, public economics, econometric theory.

Search