Zinc-containing bioactive glasses for bone regeneration, dental and orthopedic applications

Preethi Balasubramanian 1 , Leonie A. Strobel 2 , Ulrich Kneser 2 , and Aldo R. Boccaccini 1
  • 1 Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
  • 2 Department of Hand, Plastic and Reconstructive Surgery - Burn Center, University of Heidelberg, Ludwigshafen, Germany

Abstract

Zinc is a vital and beneficial trace element found in the human body. Though found in small proportions, zinc performs a variety of functions in relation to the immune system, cell division, fertility and the body growth and maintenance. In particular, zinc is proven to be a necessary element for the formation, mineralization, development and maintenance of healthy bones. Considering this attractive attributes of zinc, recent research has widely focused on using zinc along with silicate-based bioactive glasses for bone tissue engineering applications. This paper reviews relevant literature discussing the significance of zinc in the human body, along with its ability to enhance antibacterial effects, bioactivity and distinct physical, structural and mechanical properties of bioactive glasses. In this context, even if the present analysis is not meant to be exhaustive and only representative studies are discussed, literature results confirm that it is essential to understand the properties of zinc-containing bioactive glasses with respect to their in vitro biological behavior, possible cytotoxic effects and degradation characteristics to be able to effectively apply these glasses in bone regeneration strategies. Topics attracting increasing research efforts in this field are elaborated in detail in this review, including a summary of the structural, physical, biological and mechanical properties of zinc-containing bioactive glasses. This paper also presents an overview of the various applications in which zinc-containing bioactive glasses are considered for use as bone tissue scaffolds, bone filling granules, bioactive coatings and bone cements, and advances and remaining challenges are highlighted.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Salgado A.J., Coutinho O.P., Reis RL., Bone tissue engineering: State of the art and future trends, Macromol. Biosci. 2004, 4, 743–765

  • [2] Shrivats A.R., McDermott M.C., Hollinger J.O., Bone tissue engineering: state of the union, Drug Discov. Today 2014, 19, 781–786

  • [3] Gomes S., Leonor I.B., Mano J.F., Reis R.L., Kaplan D.L., Natural and genetically engineered proteins for tissue engineering, Prog. Polym. Sci. 2012, 37, 1–17

  • [4] Hench L.L., The story of Bioglass, J. Mater. Sci. Mater. Med. 2006, 17, 967–978

  • [5] Hench L.L., Splinter R.J., Allen W.C., Greenlee T.K., Bonding mechanisms at the interface of ceramic prosthetic materials, J. Biomed. Mater. Res. 1971, 5, 117–141

  • [6] Hench L.L., Polak J.M., Third-generation biomedicalmaterials. Science 2002, 295, 1014–1017

  • [7] Hench L.L., Xynos I.D., Polak J.M., Bioactive glasses for in situ tissue regeneration, J. Biomater. Sci. Polym. Ed. 2004, 15, 543–562

  • [8] Gorustovich A.A., Roether J.A., Boccaccini A.R., Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences, Tissue Eng. Part B Rev. 2010, 16, 199–207

  • [9] Jones J.R., Review of bioactive glass: From Hench to hybrids, Acta. Biomater. 2013, 9, 4457–4486

  • [10] Gomez-Vega J., Saiz E., Tomsia A., Marshall G., Marshall S., Bioactive glass coatings with hydroxyapatite and Bioglassr particles on Ti-based implants. 1. Processing, Biomaterials 2000, 21, 105–111

  • [11] Gerhardt L.C., Widdows K.L., Erol M.M., Burch C.W., Sanz- Herrera J.A., Ochoa I., et al., The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds, Biomaterials 2011, 32, 4096–4108

  • [12] Rahaman M.N., Day D.E., Sonny Bal B., Fu Q., Jung S.B., Bonewald L.F., et al., Bioactive glass in tissue engineering, Acta Biomater. 2011, 7, 2355–2373

  • [13] Rezwan K., Chen Q.Z., Blaker J.J., Boccaccini A.R., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials 2006, 27, 3413–3431

  • [14] Hoppe A., Güldal N.S., Boccaccini A.R., A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials 2011, 32, 2757–2774

  • [15] Brown K.H.,Wuehler S.E., Peerson J.M., The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency, Food Nutr. Bull. 2001, 22, 113–125

  • [16] Chasapis C.T., Loutsidou A.C., Spiliopoulou C.A., Stefanidou M.E., Zinc and human health: an update, Arch. Toxicol. 2012, 86, 521–534

  • [17] Yamaguchi M., Role of nutritional zinc in the prevention of osteoporosis, Mol. Cell. Biochem. 2010, 338, 241–254

  • [18] Aydin S.B., Hanley L., Antibacterial activity of dental composites containing zinc oxide nanoparticles, J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 94, 22–31

  • [19] Yamaguchi M., Yamaguchi R., Action of zinc on bone metabolism in rats: Increases in alkaline phosphatase activity and DNA content. Biochem Pharmacol 1986, 35, 773–777

  • [20] Ito A., Kawamura H., Otsuka M., Ikeuchi M., Ohgushi H., Ishikawa K., et al., Zinc-releasing calcium phosphate for stimulating bone formation, Mater. Sci. Eng. C 2002, 22, 21–25

  • [21] Stefanidou M., Maravelias C., Dona A., Spiliopoulou C., Zinc: a multipurpose trace element, Arch. Toxicol. 2006, 80, 1–9

  • [22] Vallee B.L., Falchuk K.H., The biochemical basis of zinc physiology. Physiol. Rev. 1993, 73, 79–118

  • [23] Lansdown A.B.G., Mirastschijski U., Stubbs N., Scanlon E., Agren M.S., Zinc in wound healing: Theoretical, experimental, and clinical aspects, Wound Repair Regen. 2007, 15, 2-16

  • [24] Haumont S., Distribution of zinc in bone tissue, J. Histochem. Cytochem. 1961, 9, 141-145

  • [25] Murray E.J., Messer H.H., Turnover of bone zinc during normal and accelerated bone loss in rats, J. Nutr. 1981, 111, 1641–1647

  • [26] Hsieh H.S., Navia J.M., Zinc deficiency and bone formation in guinea pig alveolar implants, J. Nutr. 1980, 110, 1581–1588

  • [27] Oner G., Bhaumick B., Bala R.M., Effect of zinc deficiency on serum somatomedin levels and skeletal growth in young rats, Endocrinology 1984, 114, 1860–1863

  • [28] Aitken J.M., Factors affecting the distribution of zinc in the human skeleton, Calcif. Tissue Res. 1976, 20, 23–30

  • [29] Yamaguchi M., Oishi H., Suketa Y., Stimulatory effect of zinc on bone formation in tissue culture, Biochem. Pharmacol. 1987, 36, 4007–4012

  • [30] Yamaguchi M., Role of Zinc in Bone Formation and Bone Resorption, 1998, 135, 119–135

  • [31] Zhang X.F., Kehoe S., Adhi S.K., Ajithkumar T.G., Moane S., O’Shea H., et al., Composition–structure–property (Zn2+ and Ca2+ ion release) evaluation of Si–Na–Ca–Zn–Ce glasses: Potential components for nerve guidance conduits, Mater. Sci. Eng. C 2011, 31, 669–676

  • [32] Sabbatini M., Boccafoschi F., Bosetti M., Cannas M., Adhesion and differentiation of neuronal cells on Zn-doped bioactive glasses, J. Biomater. Appl. 2014, 28, 708–718

  • [33] Hasan M.S., Kehoe S., Boyd D., Temporal analysis of dissolution by-products and genotoxic potential of spherical zincsilicate bioglass: “imageable beads” for transarterial embolization, J. Biomater. Appl. 2014, 29, 566–581

  • [34] El-Kady A.M., Ali A.F., Fabrication and characterization of ZnO modified bioactive glass nanoparticles, Ceram. Int. 2012, 38, 1195–1204

  • [35] Anand V., Singh K.J., Kaur K., Evaluation of zinc and magnesium doped 45S5 mesoporous bioactive glass system for the growth of hydroxyl apatite layer, J. Non Cryst. Solids 2014, 406, 88–94

  • [36] Kaur G., Pickrell G., Kimsawatde G., Homa D., Allbee H.A., Sriranganathan N., Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2- B2O3-ZnO bioactive glasses, Sci. Rep. 2014, 4, 4392

  • [37] Aina V., Malavasi G., Fiorio P.A., Munaron L., Morterra C., Zinccontaining bioactive glasses: surface reactivity and behaviour towards endothelial cells, Acta Biomater. 2009, 5, 1211–1222

  • [38] Srivastava A.K., Pyare R., Characterization of ZnO substituted 45S5 Bioactive Glasses and Glass - Ceramics, J. Mater. Sci. Res. 2012, 1, 207–220

  • [39] Haimi S., Gorianc G., Moimas L., Lindroos B., Huhtala H., Räty S., et al., Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation, Acta Biomater 2009, 5, 3122–3131

  • [40] Goh Y.F., Alshemary A.Z., Akram M., Abdul Kadir M.R., Hussain R., In vitro study of nano-sized zinc doped bioactive glass, Mater. Chem. Phys. 2013, 137, 1031–1038

  • [41] Lusvardi G., Malavasi G., Menabue L., Menziani M.C., Pedone A., Segre U., et al., Properties of zinc releasing surfaces for clinical applications. J. Biomater. Appl. 2008, 22, 505–526

  • [42] Lusvardi G., Zaffe D., Menabue L., Bertoldi C., Malavasi G., Consolo U., In vitro and in vivo behaviour of zinc-doped phosphosilicate glasses, Acta Biomater. 2009, 5, 419–428

  • [43] Cassingham N.J., Stennett M.C., Bingham P.A., Hyatt N.C., Aquilanti G., The Structural Role of Zn in Nuclear Waste Glasses, Int. J. Appl. Glas. Sci. 2011, 2, 343–353

  • [44] Kapoor S., Goel A., Tilocca A., Dhuna V., Bhatia G., Dhuna K., et al., Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses, Acta Biomater. 2014, 10, 3264–3278

  • [45] Kapoor S., Goel A., Correia A.F., Pascual M.J., Lee H., Kim H., Ferreira J.M.F., Influence of ZnO/MgO substitution on sintering, crystallization, and bio-activity of alkali-free glassceramics, Mater. Sci. Eng. C 2015, In Press

  • [46] Chen X., Brauer D.S., Karpukhina N., Waite R.D., Barry M., McKay I.J., et al., “Smart” acid-degradable zinc-releasing silicate glasses, Mater. Lett. 2014, 126, 278–280

  • [47] Kamitakahara M., Ohtsuki C., Inada H., Tanihara M., Miyazaki T., Effect of ZnO addition on bioactive CaO-SiO2-P2O5-CaF2 glass-ceramics containing apatite and wollastonite, Acta Biomater. 2006, 2, 467–471

  • [48] Salinas A.J., Shruti S., Malavasi G., Menabue L., Vallet-Regí M., Substitutions of cerium, galliumand zinc in ordered mesoporous bioactive glasses., Acta Biomater. 2011, 7, 3452–3458

  • [49] Balamurugan A., Balossier G., Kannan S., Michel J., Rebelo A.H.S., Ferreira J.M.F., Development and in vitro characterization of sol-gel derived CaO-P2O5-SiO2-ZnO bioglass, Acta Biomater. 2007, 3, 255–262

  • [50] Oki A., Parveen B., Hossain S., Adeniji S., Donahue H., Preparation and in vitro bioactivity of zinc containing sol-gel-derived bioglass materials, J. Biomed. Mater. Res. A, 2004, 69, 216– 221

  • [51] Bini M., Grandi S., Capsoni D., Mustarelli P., Saino E., Visai L., SiO2-P2O5-CaO Glasses and Glass-Ceramics with and without ZnO: Relationships among Composition, Microstructure, and Bioactivity, J. Phys. Chem. C 2009, 113, 8821–8828

  • [52] Saino E., Grandi S., Quartarone E., Maliardi V., Galli D., Bloise N, et al., In vitro calcified matrix deposition by human osteoblasts onto a zinc-containing bioactive glass, Eur. Cell. Mater. 2011, 21, 59–72

  • [53] Singh R.K., Srinivasan A., Bioactivity of SiO2–CaO–P2O5– Na2O glasses containing zinc–iron oxide, Appl. Surf. Sci. 2010, 256, 1725–1730

  • [54] Erol M., Özyuguran A., Çelebican Ö., Synthesis, Characterization, and In Vitro Bioactivity of Sol-Gel-Derived Zn, Mg, and Zn- Mg Co-Doped Bioactive Glasses, Chem. Eng. Technol. 2010, 33, 1066–1074

  • [55] Du R.L., Chang J., Ni S.Y., ZhaiW.Y.,Wang J.Y., Characterization and in vitro bioactivity of zinc-containing bioactive glass and glass-ceramics, J. Biomater. Appl. 2006, 20, 341–360

  • [56] Du R.L., Chang J., The influence of Zn on the deposition of HA on sol-gel derived bioactive glass, Biomed. Mater. Eng. 2006, 16, 229–236

  • [57] Veres R., Vulpoi A., Magyari K., Ciuce C., Simon V., Synthesis, characterisation and in vitro testing of macroporous zinc containing scaffolds obtained by sol–gel and sacrificial template methods, J. Non Cryst. Solids, 2013, 373-374, 57–64

  • [58] Wang X., Li X., Ito A., Sogo Y., Synthesis and characterization of hierarchicallymacroporous and mesoporous CaO-MO-SiO2- P2O5 (M=Mg, Zn, Sr) bioactive glass scaffolds, Acta Biomater. 2011, 7, 3638–3644

  • [59] Looney M., O’Shea H., Boyd D., Preliminary evaluation of therapeutic ion release from Sr-doped zinc-silicate glass ceramics, J. Biomater. Appl. 2013, 27, 511–524

  • [60] Soundrapandian C.,Mahato A., Kundu B., Datta S., Sa B., Basu D., Development and effect of different bioactive silicate glass scaffolds: In vitro evaluation for use as a bone drug delivery system, J. Mech. Behav. Biomed. Mater. 2014, 40, 1–12

  • [61] Shruti S., Salinas A.J., Lusvardi G., Malavasi G., Menabue L., Vallet-Regi M., Mesoporous bioactive scaffolds prepared with cerium-, gallium- and zinc-containing glasses, Acta Biomater. 2013, 9, 4836–4844

  • [62] Shruti S., Salinas A.J., In vitro antibacterial capacity and cytocompatibility, J. Mater. Chem. B 2014, 2, 4836–4847

  • [63] Oh S.A., Kim S.H., Won J.E., Kim J.J., Shin U.S., Kim H.W., Effects on growth and osteogenic differentiation of mesenchymal stem cells by the zinc-added sol-gel bioactive glass granules, J. Tissue Eng. 2011, 2010, 475260-475270

  • [64] Boyd D., Carroll G., Towler M.R., Freeman C., Farthing P., Brook I.M., Preliminary investigation of novel bone graft substitutes based on strontium-calcium-zinc-silicate glasses, J. Mater. Sci. Mater. Med. 2009, 20, 413–420

  • [65] Murphy S., Boyd D., Moane S., Bennett M., The effect of composition on ion release from Ca-Sr-Na-Zn-Si glass bone grafts, J. Mater. Sci. Mater. Med. 2009, 20, 2207–2214

  • [66] Xie D., Feng D., Chung I.D., Eberhardt A.W., A hybrid zinc– calcium–silicate polyalkenoate bone cement, Biomaterials 2003, 24, 2749–2757

  • [67] Boyd D., Clarkin O.M., Wren A.W., Towler M.R., Zinc-based glass polyalkenoate cements with improved setting times and mechanical properties, Acta Biomater. 2008, 4, 425–431

  • [68] Boyd D., Li H., Tanner D.A., Towler M.R., Wall J.G., The antibacterial effects of zinc ion migration from zinc-based glass polyalkenoate cements, J. Mater. Sci. Mater. Med. 2006, 17, 489–494

  • [69] Brauer D.S., Gentleman E., Farrar D.F., Stevens M.M., Hill R.G., Benefits and drawbacks of zinc in glass ionomer bone cements, Biomed. Mater. 2011, 6, 045007

  • [70] Zhang J., Park Y.D., Bae W.J., El-Fiqi A., Shin S.H., Lee E.J., et al., Effects of bioactive cements incorporating zinc-bioglass nanoparticles on odontogenic and angiogenic potential of human dental pulp cells, J. Biomater. Appl. 2015, 29, 954–64

  • [71] Boyd D., Towler M.R., Law R.V., Hill R.G., An investigation into the structure and reactivity of calcium-zinc-silicate ionomer glasses using MAS-NMR spectroscopy, J. Mater. Sci. Mater. Med. 2006, 17, 397-402

  • [72] Zhang X., Werner-Zwanziger U., Boyd D., Compositionstructure- property relationships for non-classical ionomer cements formulated with zinc-boron germanium-based glasses, J. Biomater. Appl. 2015, 29, 1203-17

  • [73] Lynch E., Brauer D.S., Karpukhina N., Gillam D.G., Hill R.G., Multi-component bioactive glasses of varying fluoride content for treating dentin hypersensitivity, Dent.Mater. 2012, 28, 168-178

  • [74] Esteban-Tejeda L., Díaz L.A., Prado C., Cabal B., Torrecillas R., Moya J.S., Calciumand zinc containing bactericidal glass coatings for biomedical metallic substrates, Int. J. Mol. Sci. 2014, 15, 13030–13044

  • [75] Lotfibhakshaiesh N., Brauer D.S., Hill R.G., Bioactive glass engineered coatings for Ti6Al4V alloys: Influence of strontium substitution for calcium on sintering behaviour, J. Non-Cryst. Solids 2010, 356, 2583-90

  • [76] Dietzel A., Die Kationenfeldskärten und ihre Beziehungen zu Entglasungsvorgängen, zur Verbindungsbildung und zu denSchmelzpunkten von Silicaten, Z. Electrochem. Angew. P. 1942, 48, 9-23.

  • [77] Lusvardi G., Malavasi G., Menabue L., Menziani M.C., Synthesis, characteriaztation and molecular dynamics simulation of Na2O-CaO-SiO2-ZnO glasses, J. Phys. Chem. B 2002, 106, 9753-60.

  • [78] Wallace K., Design of novel bioactive glass compositions, PhD thesis, University of Limerick, Limerick, Ireland, 2000

  • [79] McMillan P., Glass-Ceramics., London, Academic Press, 1964

  • [80] Grand M. Le., Ramos A.Y., Calas G., Galoisy L., Ghaleb D., Pacaud F., Zinc environment in aluminoborosilicate glasses by Zn K-edge extended x-ray absorption fine structure spectroscopy, J. Mater. Res. 2011, 15, 2015–2019

  • [81] Verné E., Bretcanu O., Balagna C., Bianchi C.L., Cannas M., Gatti S., et al., Early stage reactivity and in vitro behavior of silica-based bioactive glasses and glass-ceramics, J. Mater. Sci. Mater. Med. 2009, 20, 75–87

  • [82] Aina V., Perardi A., Bergandi L., Malavasi G., Menabue L., Morterra C., et al., Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts, Chem. Biol. Interact. 2007, 167, 207–218

  • [83] Lao J., Nedelec J., Jallot E., Controlled Bioactivity in Zinc-Doped Sol - Gel-Derived Binary Bioactive Glasses, J. Phys. Chem. 2008, 112, 13663–13667

  • [84] Kokubo T., Takadama H., Howuseful is SBF in predicting in vivo bone bioactivity?, Biomaterials 2006, 27, 2907–2915

  • [85] Kanzaki N., Onuma K., Treboux G., Tsutsumi S., Ito A., Inhibitory Effect ofMagnesiumand Zinc on Crystallization Kinetics of Hydroxyapatite (0001) Face, J. Phys. Chem. B 2000, 104, 4189–4194

  • [86] Hill R.G., Brauer D.S., Predicting the bioactivity of glasses using the network connectivity or split network models, J. Non Cryst. Solids 2011, 357, 3884–3887

  • [87] Leek J.C., Keen C.L., Vogler J.B., Golub M.S., Hurley L.S., Hendrickx A.G., et al., Long-term marginal zinc deprivation in rhesus monkeys. IV. Effects on skeletal growth and mineralizatio, Am. J. Clin. Nutr. 1988, 47, 889–895

  • [88] Nagata M., Kayanoma M., Takahashi T., Kaneko T., Hara H., Marginal zinc deficiency in pregnant rats impairs bone matrix formation and bone mineralization in their neonates, Biol. Trace. Elem. Res. 2011, 142, 190–199

  • [89] Hadley K.B., Newman S.M., Hunt J.R., Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation,matrixmaturation, and mineralization in the long bones of growing rats, J. Nutr. Biochem. 2010, 21, 297–303

  • [90] Dimai H.P., Hall S.L., Stilt-Coflng B., Farley J.R., Skeletal response to dietary zinc in adult female mice, Calcif. Tissue Int. 1998, 62, 309–315

  • [91] Jones L., Thomsen J.S., Barlach J., Mosekilde L., Melsen B., No influence of alimentary zinc on the healing of calvarial defects filled with osteopromotive substances in rats, Eur. J. Orthod. 2010, 32, 124–130

  • [92] Hyun T.H., Barrett-Connor E., Milne D.B., Zinc intakes and plasma concentrations in men with osteoporosis: the Rancho Bernardo Study, Am. J. Clin. Nutr. 2004, 80, 715–721

  • [93] Bouglé D.L., Sabatier J.P., Guaydier-Souquières G., Guillon- Metz F., Laroche D., Jauzac P., et al., Zinc status and bone mineralisation in adolescent girls, J. Trace Elem. Med. Biol. 2004, 18, 17–21

  • [94] Nagata M., Lönnerdal B., Role of zinc in cellular zinc traflcking and mineralization in a murine osteoblast-like cell line, J. Nutr. Biochem. 2011, 22, 172–178

  • [95] Liang D., Yang M., Guo B., Cao J., Yang L., Guo X., Zinc upregulates the expression of osteoprotegerin in mouse osteoblasts MC3T3-E1 through PKC/MAPK pathways, Biol. Trace Elem. Res. 2012, 146, 340–348

  • [96] Yamaguchi M., Weitzmann M.N., Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-kB activation, Mol. Cell. Biochem. 2011, 355, 179–186

  • [97] Lam J., Takeshita S., Barker J.E., Kanagawa O., Ross F.P., Teitelbaum S.L., TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand, J. Clin. Invest. 2000, 106, 1481–1488

  • [98] Kwun I.S., Cho Y.E., Lomeda R.A.R., Shin H.I., Choi J.Y., Kang Y.H., et al., Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation, Bone, 2010, 46, 732–741

  • [99] Nikolic-Hughes I., O’Brien P.J., Herschlag D., Alkaline phosphatase catalysis is ultrasensitive to charge sequestered between the active site zinc ions, J. Am. Chem. Soc. 2005, 127, 9314–9315

  • [100] Gerhardt L.C., Boccaccini A.R., Bioactive Glass and Glass- Ceramic Scaffolds for Bone Tissue Engineering, Materials 2010, 3, 3867–3910

  • [101] Ritger P.L., Peppas N.A., A simple equation for description of solute release II. Fickian and anomalous release from swellable devices, J. Control. Release 1987, 5, 37–42

  • [102] Vallet-Regí M., Balas F., Arcos D., Mesoporous materials for drug delivery, Angew. Chem. Int. Ed. Engl. 2007, 46, 7548– 7558

  • [103] Smith D.C., A new dental cement, Br. Dent. J. 1968, 125, 381- 384

  • [104] Wilson A.D., Kent B.E., The glass-ionomer cement: a new translucent cement for dentistry, J. Appl. Chem. Biotech. 1971, 21, 313

  • [105] Peters W.J., Jackson R.W., Smith D.C., Studies of the Stability and Toxicity of Zinc Polyacrylate (polycarboxylate) Cements (PAZ)*, J. Biomed. Mater. Res. 1974, 8, 53–60

  • [106] Darling M., Hill R., Novel polyalkenoate (glass-ionomer) dental cements based on zinc silicate glasses, Biomaterials 1994, 15, 299–306

  • [107] Lewis G., Towler M.R., Boyd D., German M.J., Wren A.W., Clarkin O.M., et al., Evaluation of two novel aluminum-free, zinc-based glass polyalkenoate cements as alternatives to PMMA bone cement for use in vertebroplasty and balloon kyphoplasty, J. Mater. Sci. Mater. Med. 2010, 21, 59–66

  • [108] Qiao Y., ZhangW., Tian P., Meng F., Zhu H., Jiang X., et al., Stimulation of bone growth following zinc incorporation into biomaterials, Biomaterials 2014, 35, 6882–6897

OPEN ACCESS

Journal + Issues

Search