"Imageable" Zinc-Silicate Glass Microspheres For Transarterial Embolization: A Renal Artery Embolization Study.

Sharon Kehoe, Salma Amensag, Mark Looney, Robert J. Abraham,  and Daniel Boyd
  • 1 ABK Biomedical Inc. 1344 Summer Street, Suite 212, Halifax, B3H0A8
  • 2 Department of Applied Oral Sciences, Dalhousie University, PO Box 15000, Halifax, NS, Canada, B3H 4R2
  • 3 School of Biomedical Engineering, Dalhousie University, PO Box 15000, Halifax, NS, Canada, B3H 4R2
  • 4 Department of Diagnostic Imaging and Interventional Radiology, QE II Health Sciences Centre, Halifax, NS, Canada, B3H 3A7

Abstract

Intrinsically radiopaque (imageable) microspheres for transarterial embolization (TAE) are required to enable real-time intraprocedural feedback and definition of spatial distribution patterns of embolic materials in target tissues. This pilot study evaluates acute and sub-chronic safety and efficacy of imageable zinc-silicate (Zn-Si) glass microspheres in a swine renal artery embolization (RAE) model. Eight swine were divided into two cohorts. Clinical determinants of embolization effectiveness, including imageability, deliverability and temporal/ spatial distribution of microspheres in target tissues were assessed. Subsequently, cohort I and II were used to evaluate the acute and subchronic host response against the Zn-Si microspheres versus a clinical control. The developed microspheres provide for direct intraprocedural feedback using standard diagnostic imaging techniques. Fluoroscopy correlated with ex-vivo high-resolution radiography, CT and micro-CT, demonstrating high imageability, excellent spatial distribution and packing of the Zn- Si microspheres. At follow-up, infarction of the embolized kidneys was noted without any major adverse tissue reaction. Mild recanalization was observed microscopically for both experimental and control microspheres. Zn-Si microspheres permit the definition of spatial distribution in a target tissue, consequently permitting the optimization, personalization and improvement of TAE techniques.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Baino F., Novajra G., Miguez-Pacheo V., Boccaccini A.R., Vitale- Brovarone C., Bioactive Glasses: Special Applications outside the Skeletal System, J. Non. Cryst. Sol. 2015, XXX, XXX-XXX

  • [2] Laurent A., Microspheres and Nonspherical Particles for Embolization, Techn. Vasc. and Inter. Radiol. 2007, 10, 248-256

  • [3] Ryu R., Uterine Artery Embolization: Current Implications of Embolic Agent Choice, J. Vasc. Inter. Radiol. 2005, 16, 1419-1422

  • [4] Sharma K.V., Dreher M.R., Tang Y., Pritchard W.F., Chiesa O.A., Karanian J., et al., Development of “Imageable” Beads for Transcatheter Embolotherapy, J. Vasc. Interv. Radiol. 2010, 21, 865– 876

  • [5] Dreher M.R., Sharma K.V., Woods D.L., Reddy G., Tang Y., Pritchard W.F., et al., Radiopaque Drug-Eluting Beads for Transcatheter Embolotherapy: Experimental Study of Drug Penetration and Coverage in Swine, J. Vasc. Interv. Radiol. 2012, 23, 257–264

  • [6] Lu X.J., Zhang Y., Cui D.C., Meng W.J., Du L.R., Guan H.T., et al., Research of Novel Biocompatible Radiopaque Microcapsules for Arterial Embolization, Int. J. Pharm. 2013, 452, 211-219

  • [7] Stampfl S., Stampfl U., Bellemann N., Sommer C.M., Thierjung H., Radeleff B., et al., Biocompatibility and Recanalization Characteristics of Hydrogel Microspheres with Polyzene-F as Polymer Coating, Cardiovasc. Interv. Radiol. 2008, 31, 799–806

  • [8] Siskin G.P., Dowling K., Virmani R., Jones R., Todd D., Pathologic Evaluation of a Spherical Polyvinyl Alcohol Embolic Agent in a Porcine Renal Model, J. Vasc. Interv. Radiol. 2003, 14, 89–98

  • [9] Spies J.B. Uterine Artery Embolization for Fibroids: Understanding the Technical Causes of Failure, J. Vasc. Interv. Radiol. 2003, 14, 11–14

  • [10] Lopera G., Embolization in Trauma: Principles and Techniques, Semin. Interv. Radiol. 2010, 27, 14–28

  • [11] Kehoe S., Tonkopi E., Abraham R., Boyd D., Predicting the Thermal Responses and Radiopacity of Multicomponent Zinc– Silicate Bioglasses: A focus on ZnO, La2O3, SiO2 and TiO2, J. Non. Cryst. Sol. 2012, 358, 3388–3395

  • [12] Kehoe S., Kilcup N., Boyd D., Evaluation of Cytotoxicity for Novel Composite Embolic Microspheres:Material Optimization by Response Surface Methodology, Mat. Lett. 2012, 86, 13–17

  • [13] Kehoe S., Abraham R., Tonkopi E., Boyd D., Novel Radiopaque Embolic Agent for Uterine Fibroid Embolization: Determination of Radiopacity and Biological Evaluation; Cytocompatibility, Intracutaneous Reactivity and Local Effects after Implantation, J. Vasc. Interv. Radiol. 2011, 23, S33

  • [14] Kehoe S., Langman M., Werner-Zwanziger U., Abraham R.J., Boyd D., Mixture Designs to assess Composition-Structure- Property Relationships in SiO2–CaO–ZnO–La2O3–TiO2–MgO– SrO–Na2O Glasses: PotentialMaterials for Embolization, J. Biomater. App. 2013, 28, 416–433

  • [15] Kehoe S., Tremblay M.T., Coughlan A., Towler M.R., Rainey J.K., Abraham R.J., Boyd D., Preliminary Investigation of the Dissolution Behaviour, Cytocompatibility, Effects of Fibrinogen Conformation and Platelet Adhesion for Radiopaque Embolic Particles, J. Funct. Biomater. 2013, 4, 89–113

  • [16] Kehoe S. Looney M., Kilcup N., Tonkopi E., Daly C., Abraham R.J., Boyd D., Effects of 𝛾-Irradiation and Accelerated Aging on Composition-Structure–Property Relationships for Radiopaque Embolic Microspheres, J. Non. Crystal. Sol. 2014, 402, 84–90

  • [17] Hasan M., Kehoe S., Boyd D., Temporal analysis of dissolution by-products and genotoxic potential of spherical zinc–silicate bioglass: “Imageable beads” for transarterial embolization, J. Biomater. App. 2014, 29, 566–581

  • [18] Pelage J.P., Polyvinyl Alcohol Particles versus Tris-acryl Gelatin Microspheres for Uterine Artery Embolization for Leiomyomas, J. Vasc. Interv. Radiol. 2004, 15, 789–791

  • [19] Stampfl S., Stampfl U., Rehnitz C., Schnabel Ph., Satzl S., Christoph P., et al., Experimental Evaluation of Early and Long- Term Effects of Microparticle Embolization in Two Different Minipig Models, Part I: Kidney, Cardiovasc. Interv. Radiol. 2007, 30, 257–267

  • [20] Araki N., Nagata Y., Fujiwara K., Aoki T., Mitsumori M., Kimura H., et al., Evaluation of Glass Microspheres for Intra-arterial Radiotherapy in Animal Kidneys, Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 459–463

  • [21] Stampfl S., Bellemann N., Stampfl U., Radeleff B., Lopez- Benitez R., Sommer C.M., et al., Inflammation and Recanalization of Four Different Spherical Embolization Agents in the Porcine Kidney Model, J. Vasc. Interv. Radiol. 2008, 19, 577–586

  • [22] Andrews R.T., Binkert C.A., Relative Rates of Blood Flow Reduction during Transcatheter Arterial Embolization with Tris-acryl Gelatin Microspheres or Polyvinyl Alcohol: Quantitative Comparison in a Swine Model, J. Vasc. Interv. Radiol. 2003, 14, 1311– 1316

  • [23] Bilbao J.I., de Luis E., García de Jalón J.A., deMartino A., Lozano M.D., de la Cuesta A.M., et al., Comparative Study of Four Different Spherical Embolic Particles in an Animal Model: A Morphologic and Histologic Evaluation, J. Vasc. Interv. Radiol. 2008, 19, 1625–1638

  • [24] Stampfl S., Bellemann N., Stampfl U., Sommer C.M., Thierjung H., Lopez-Benitez R., Arterial Distribution Characteristics of Embozene Particles and Comparison with other Spherical Embolic Agents in the Porcine Acute Embolization Model, J. Vasc. Interv. Radiol. 2009, 20, 1597–1607

  • [25] Swindle M.M., Makin A., Herron A.J., Clubb Jr. F.J., Frazier K.S., Swine as Models in Biomedical Research and Toxicology Testing, Veter. Pathol. 2012, 49, 344–356

  • [26] Siskin G.P., Englander M., Stainken B.F., Ahn J., Dowling K., Dolen E.G., Embolic Agents used for Uterine Fibroid Embolization, 2000, AJNR, 175, 767–773

  • [27] Laurent A.,Wassef M.,Namur J.,Martal J., Labarre D., Pelage J.P., 2009, Recanalization and Particle Exclusion after Embolization of Uterine Arteries in Sheep: A Long-Term Study, Fertil. Steril. 2009, 91, 884–892

  • [28] Arakawa H., Murayama Y., Davis C.R., Howard D.L., Baumgardnera W.L., Marks M.P., Do H.M., Endovascular Embolization of the Swine Rete Mirabile with Eudragit-E 100 Polymer, Amer. J. Neuroradiol. 2007, 28, 1191–1196

  • [29] Germano I.M., Davis R.L., Wilson C.B., Hieshima G.B., Histopathological Follow-up Study of 66 Cerebral Arteriovenous Malformations after Therapeutic Embolization with Polyvinyl Alcohol, J. Neurosurg. 1992, 76, 607–614

  • [30] Davidson G.S., Terbrugge K.G., Histologic Long-Term Follow-up after Embolizationwith Polyvinyl Alcohol Particles, Amer. J. Neuroradiol. 1995, 16, 843–846

  • [31] Schoen F.J., Levy R.J., Calcification of Tissue Heart Valve Substitutes: Progress toward Understanding and Prevention, Ann. Thorac. Surg. 2005, 79, 1072–1080

OPEN ACCESS

Journal + Issues

Biomedical Glasses is an international open access journal covering the field of glasses for biomedical applications. The aim of the journal is to provide a peer-reviewed forum for the publication of original research reports and authoritative review articles related to the development of biomedical glasses and their use in clinical applications.

Search