Influence of zinc and magnesium substitution on ion release from Bioglass 45S5 at physiological and acidic pH

Max Blochberger 1 , Leena Hupa 2 ,  and Delia S. Brauer 1
  • 1 Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena, Germany
  • 2 Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Piispankatu 8, 20500 Turku, Finland


Ion release of Mg- and Zn-substituted Bioglass 45S5 (46.1 SiO2-2.6 P2O5-26.9 CaO-24.3Na2O; mol%; with 0, 25, 50, 75 or 100% of calcium replaced bymagnesium/zinc) was investigated at pH 7.4 (Tris buffer) and pH 4 (acetic acid/sodium acetate buffer) in static and dynamic dissolution experiments. Despite Mg2+ and Zn2+ having the same charge and comparable ionic radii, they influenced the dissolution behaviour in very different ways. In Tris, Mgsubstituted glasses showed similar ion release as 45S5, while Zn-substituted glasses showed negligible ion release. At low pH, however, release behaviour was similar, with all glasses releasing large percentages of ions within a few minutes. Precipitation of crystalline phases also varied, as Mg- and Zn-substitution inhibited apatite formation, and Zn-substitution resulted in formation of zinc phosphate phases at low pH. These results are relevant for glasses used in aluminium-free glass ionomer bone cements, as they show that Zn/Mg-substituted glasses release ions similarly fast as glasses containing no Zn/Mg, suggesting that these ions are no prerequisite for ionomer glasses. Zn-substituted glasses may potentially be used as controlled-release materials, which release antibacterial zinc ions when needed only, i.e. at low pH conditions (e.g. bacterial infection), but not at normal physiological pH conditions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Wilson A.D., Prosser H.J., Powis D.M., Mechanism of adhesion of poly-electrolyte cements to hydroxyapatite, J Dent Res 1983, 62, 590–592.

  • [2] De Barra E., Grifln S., Henn G., Hill R., Devlin J., Johal K. et al., The mechanism of fluoride release from glass (ionomer) polyalkenoate cements, J Dent Res 1995, 74, 833–833.

  • [3] Brauer D.S., Karpukhina N., Kedia G., Bhat A., LawR.V., Radecka I. et al., Bactericidal strontium-releasing injectable bone cements based on bioactive glasses, J Roy Soc Interface 2013, 10, 20120647.

  • [4] Blades M.C., Moore D.P., Revell P.A., Hill R., in vivo skeletal response and biomechanical assessment of two novel polyalkenoate cements following femoral implantation in the female New Zealand White rabbit, J Mater Sci-Mater M 1998, 9, 701–706.

  • [5] Boyd D., Clarkin O.M.,Wren A.W., Towler M.R., Zinc-based glass polyalkenoate cements with improved setting times and mechanical properties, Acta Biomater 2008, 4, 425–431.

  • [6] Brauer D.S., Gentleman E., Farrar D.F., Stevens M.M., Hill R.G., Benefits and drawbacks of zinc in glass ionomer bone cements, Biomed Mater 2011, 6, 045007.

  • [7] Shannon R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst 1976, A32, 751–767.

  • [8] Balasubramanian P., Strobel L.A., Kneser U., Boccaccini A.R., Zinc-containing bioactive glasses for bone regeneration, dental and orthopedic applications, Biomedical Glasses 2015, 1, 51– 69.

  • [9] Diba M., Tapia F., Boccaccini A.R., Strobel L.A., Magnesiumcontaining bioactive glasses for biomedical applications, Int J Appl Glass Sci 2012, 3, 221–253.

  • [10] Underwood E.J., Trace elements in human and animal nutrition. Academic Press, New York, 1971 1971.

  • [11] Hsieh H.S., Navia J.M., Zinc-deficiency and bone-formation in guinea-pig alveolar implants, Journal of Nutrition 1980, 110, 1581–1588.

  • [12] Oner G., Bhaumick B., Bala R.M., Effect of zinc deficiency on serum somatomedin levels and skeletal growth in young rats, Endocrinology 1984, 114, 1860–1863.

  • [13] Lansdown A.B.G., Mirastschijski U., Stubbs N., Scanlon E., Agren M.S., Zinc in wound healing: Theoretical, experimental, and clinical aspects, Wound Repair Regen 2007, 15, 2–16.

  • [14] Prasad A.S., Clinical manifestations of zinc-deficiency, Annu Rev Nutr 1985, 5, 341–365.

  • [15] Yamaguchi M., Oishi H., Suketa Y., Stimulatory effect of zinc on bone formation in tissue culture, Biochem Pharmacol 1987, 36, 4007–4012.

  • [16] Yamaguchi M., Yamaguchi R., Action of zinc on bone metabolism in rats - Increases in alkaline phosphatase activity and DNA content, Biochem Pharmacol 1986, 35, 773–777.

  • [17] Holloway W.R., Collier F.M., Herbst R.E., Hodge J.M., Nicholson G.C., Osteoblast-mediated effects of zinc on isolated rat osteoclasts: Inhibition of bone resorption and enhancement of osteoclast number, Bone 1996, 19, 137–142.

  • [18] Elliott J.C., Structure and chemistry of the apatites and other calcium orthophosphates, 1st ed. Elsevier, Amsterdam, New York, London, Tokyo, 1994 1994.

  • [19] Aaseth J., Boivin G., Andersen O., Osteoporosis and trace elements – An overview, J Trace Elem Med Bio 2012, 26, 149–152.

  • [20] FawcettW.J., Haxby E.J.,Male D.A.,Magnesium: physiology and pharmacology, Brit J Anaesth 1999, 83, 302–320.

  • [21] Cannillo V., Pierli F., Ronchetti I., Siligardi C., Zaffe D., Chemical durability and microstructural analysis of glasses soaked in water and in biological fluids, Ceram Int 2009, 35, 2853–2869.

  • [22] Punnia-Moorthy A., Evaluation of pH changes in inflammation of the subcutaneous air pouch lining in the rat, induced by carrageenan, dextran and staphylococcus aureus, J Oral Pathol Med 1987, 16, 36-44.

  • [23] Bingel L., Groh D., Karpukhina N., Brauer D.S., Influence of dissolution medium pH on ion release and apatite formation of Bioglassr 45S5, Mater Lett 2015, 143, 279–282.

  • [24] Shah F.A., Brauer D.S., Desai N., Hill R.G., Hing K.A., Fluoridecontaining bioactive glasses and Bioglassr 45S5 form apatite in low pH cell culture medium, Mater Lett 2014, 119, 96–99.

  • [25] Jones J.R., Review of bioactive glass: From Hench to hybrids, Acta Biomater 2013, 9, 4457–4486.

  • [26] Brauer D.S., Bioactive glasses—structure and properties, Angew Chem Int Edit 2015, 54, 4160-4181 and Angew Chem Ger Ed 2015, 127, 4232–4254.

  • [27] Miller C., Hatton P.V., Mirvakily F., inventors; The University of Shefleld, assignee. A novel glass-ionomer cement. UK patent WO 2014/102538 A1. 3 July 2014.

  • [28] Hill R.G., Brauer D.S., Predicting the bioactivity of glasses using the network connectivity or split network models, J Non-Cryst Solids 2011, 357, 3884–3887.

  • [29] Fagerlund S., Hupa L., Hupa M., Dissolution patterns of biocompatible glasses in 2-amino-2-hydroxymethyl-propane-1,3- diol (Tris) buffer, Acta Biomater 2013, 9, 5400–5410.

  • [30] Fagerlund S., Ek P., Hupa M., Hupa L., On determining chemical durability of glasses, Glass Technol 2010, 51, 235–240.

  • [31] Fagerlund S., Ek P., Hupa L., Hupa M., Dissolution kinetics of a bioactive glass by continuous measurement, J Am Ceram Soc 2012, 95, 3130–3137.

  • [32] Jones J.R., Sepulveda P., Hench L.L., Dose-dependent behavior of bioactive glass dissolution, J Biomed Mater Res 2001, 58, 720–726.

  • [33] Aina V., Bertinetti L., Cerrato G., Cerruti M., Lusvardi G., Malavasi G. et al., On the dissolution/reaction of small-grain Bioglass 45S5 and F-modified bioactive glasses in artificial saliva (AS), Applied Surface Science 2011, 257, 4185–4195.

  • [34] Wilson A.D., A hard decade’s work: Steps in the invention of the glass-ionomer cement, J Dent Res 1996, 75, 1723–1727.

  • [35] Dietzel A., Structural chemistry of glass, Naturwissenschaften 1941, 29, 537–547.

  • [36] Neuville D.R., Cormier L.,Massiot D., Al coordination and speciation in calciumaluminosilicate glasses: Effects of composition determined by Al-27 MQ-MAS NMR and Raman spectroscopy, Chem Geol 2006, 229, 173–185.

  • [37] Grifln S.G., Hill R.G., Influence of glass composition on the properties of glass polyalkenoate cements. Part I: Influence of aluminium to silicon ratio, Biomaterials 1999, 20, 1579–1586.

  • [38] Watts S.J., O’Donnell M.D., Law R.V., Hill R.G., Influence of magnesia on the structure and properties of bioactive glasses, J Non-Cryst Solids 2010, 356, 517–524.

  • [39] Pedone A., Malavasi G., Menziani M.C., Computational insight into the effect of CaO/MgO substitution on the structural properties of phospho-silicate bioactive glasses, J Phys Chem C 2009, 113, 15723–15730.

  • [40] Lusvardi G., Malavasi G., Menabue L., Menziani M.C., Segre U., Carnasciali M.M. et al., A combined experimental and computational approach to (Na2O)1−x·CaO·(ZnO)x·2SiO2 glasses characterization, J Non-Cryst Solids 2004, 345, 710–714.

  • [41] Linati L., Lusvardi G., Malavasi G., Menabue L., Menziani M.C., Mustarelli P. et al., Qualitative and quantitative structureproperty relationship analysis ofmulticomponent potential bioglasses, J Phys Chem B 2005, 109, 4989–4998.

  • [42] Aina V., Malavasi G., Pla A.F., Munaron L., Morterra C., Zinccontaining bioactive glasses: Surface reactivity and behaviour towards endothelial cells, Acta Biomater 2009, 5, 1211–1222.

  • [43] Tilocca A., Cormack A.N., Modeling the water-bioglass interface by ab initio molecular dynamics simulations, ACS Appl Mater Inter 2009, 1, 1324–1333.

  • [44] Tilocca A., Cormack A.N., The initial stages of bioglass dissolution: a Car-Parrinello molecular-dynamics study of the glasswater interface, P Roy Soc A-Math Phy 2011, 467, 2102–2111.

  • [45] Chen X., Brauer D.S., Karpukhina N., Waite R.D., Barry M., McKay I.J. et al., ‘Smart’ acid-degradable zinc-releasing silicate glasses, Mater Lett 2014, 126, 278–280.

  • [46] Shah F.A., Brauer D.S., Wilson R.M., Hill R.G., Hing K.A., Influence of cell culture medium composition on in vitro dissolution behavior of a fluoride-containing bioactive glass, J Biomed Mater Res A 2014, 102, 647–654.

  • [47] Brauer D.S., Karpukhina N., O’Donnell M.D., Law R.V., Hill R.G., Fluoride-containing bioactive glasses: Effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid, Acta Biomater 2010, 6, 3275–3282.

  • [48] Mayer I., Schlam R., Featherstone J.D.B., Magnesiumcontaining carbonate apatites, J Inorg Biochem 1997, 66, 1–6.

  • [49] Mayer I., Apfelbaum F., Featherstone J.D.B., Zinc ions in synthetic carbonated hydroxyapatites, Arch Oral Biol 1994, 39, 87– 90.

  • [50] Kanzaki N., Onuma K., Treboux G., Tsutsumi S., Ito A., Inhibitory effect of magnesium and zinc on crystallization kinetics of hydroxyapatite (0001) face, J Phys Chem B 2000, 104, 4189–4194.

  • [51] Aina V., Perardi A., Bergandi L., Malavasi G., Menabue L., Morterra C. et al., Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts, Chem-Biol Interact 2007, 167, 207–218.


Journal + Issues

Biomedical Glasses is an international open access journal covering the field of glasses for biomedical applications. The aim of the journal is to provide a peer-reviewed forum for the publication of original research reports and authoritative review articles related to the development of biomedical glasses and their use in clinical applications.