Novel antibacterial bioactive glass nanocomposite functionalized with tetracycline hydrochloride

Josefina Rivadeneira 1 , Gisela M. Luz 2 , M. Carina Audisio 3 , João F. Mano 2 ,  and Alejandro A. Gorustovich 1
  • 1 Grupo Interdisciplinario en Materiales-Universidad Católica de Salta (IESIINGUCASAL), Instituto de Tecnologías y Ciencias de Ingeniería- Universidad Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (INTECIN UBA-CONICET), Campo Castañares s/n, Salta, Argentina
  • 2 3B’s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, P-4806-909 Taipas, Guimarães, Portugal; ICVS/3B’s Associate Laboratory, Braga/Guimarães, Portugal
  • 3 Instituto de Investigaciones para la Industria Química - Consejo Nacional de Investigaciones Científicas y Técnicas (INIQUI - CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, Salta, Argentina


To prevent the high frequency of wound infections, anti-bacterial agents can be loaded onto composites. In the present study, the antibiotic tetracycline hydrochloride (TC)was incorporated, for the first time, in collagen type I membranes coated with nano-sized SiO2-CaOP2O5 bioactive glass (n-BG) obtained by a sol-gel chemical route.

Collagen membranes coated with n-BG were immersed in simulated body fluid (SBF) containing 0.25, 0.75 or 1.25 mg mL−1 of TC for 48 h at 37∘C following a coprecipitation method. The antibiotic was released in distilledwater at 37∘C for up to 72 h. The antibacterial activity of the composites was evaluated in vitro by the inhibition zone test and plate count method. Two different Staphylococcus aureus strains, S. aureus ATCC29213 and S. aureus ATCC25923, were exposed to the biomaterials. The results showed that the incorporation but not the release of TC was dependent on the initial concentration of TC in SBF. The biomaterials inhibited S. aureus growth, although the efficacy was similar for all the concentrations. The results allow us to conclude that the new composite could have potential in the prevention of wound infections.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Diefenbeck M., Mückley T., Hofmann G.O., Prophylaxis and treatment of implant-related infections by local application of antibiotics, Injury 2006, 37 Suppl 2, S95–104.

  • [2] Boateng J.S., Matthews K.H., Stevens H.N., Eccleston G.M., Wound healing dressings and drug delivery systems: a review, J. Pharm. Sci. 2008, 97, 2892–2923.

  • [3] Gao P., Nie X., Zou M., Shi Y., Cheng G., Recent advances inmaterials for extended-release antibiotic delivery system, J. Antibiot (Tokyo) 2011, 64, 625–634.

  • [4] Kittinger C., Marth E., Windhager R., Weinberg A.M., Zarfel G., Baumert R., Felisch S., Kuehn K.D., Antimicrobial activity of gentamicin palmitate against high concentrations of Staphylococcus aureus, J. Mater. Sci. Mater. Med. 2011, 22, 1447–1453.

  • [5] Chang W.K., Srinivasa S, MacCormick A.D., Hill A.G., Gentamicin-collagen implants to reduce surgical site infection: systematic review and meta-analysis of randomized trials, Ann. Surg. 2013, 258, 59–65.

  • [6] Bertesteanu S., Triaridis S., Stankovic M., Lazar V., Chifiriuc M.C., Vlad M., Grigore R., Polymicrobial wound infections: pathophysiology and current therapeutic approaches, Int. J. Pharm. 2014, 463, 119–126.

  • [7] Perumal S., Ramadass S.K., Madhan B., Sol-gel processed mupirocin silica microspheres loaded collagen scaffold: a synergistic bio-composite for wound healing, Eur. J. Pharm. Sci. 2014, 52, 26–33.

  • [8] Perchyonok V.T., Reher V., Zhang S., Basson N., Grobler S., Evaluation of nystatin containing chitosan hydrogels as potential dual action bio-active restorative materials: in vitro approach, J. Funct. Biomater. 2014, 5, 259–272.

  • [9] Elsner J.J., Berdicevsky I., Zilberman M., In vitro microbial inhibition and cellular response to novel biodegradable composite wound dressings with controlled release of antibiotics, Acta Biomater. 2011, 7, 325–336.

  • [10] Stigter M., Bezemer J., De Groot K., Layrolle P., Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic eflcacy, J. Control Release 2004, 99, 127–137.

  • [11] Miola M., Vitale-Brovarone C., Mattu C., Verné E., Antibiotic loading on bioactive glasses and glassceramics: an approach to surface modification, J. Biomater. Appl. 2012, 28, 308–319.

  • [12] Hum J., Boccaccini A.R., Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review, J. Mater Sci. Mater. Med. 2012, 23, 2317–2333.

  • [13] Arcos D., Vallet-Regí M., Bioceramics for drug delivery, Acta Mater. 2013, 46, 890–911.

  • [14] Caridade S.G., Merino E.G., Alves N.M., Bermudez Vde Z., Boccaccini A.R., Mano J.F., Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis, J. Mech. Behav. Biomed. Mater. 2013, 20,173–183.

  • [15] Hong Z., Luz G.M., Hampel P.J., Jin M., Liu A., Chen X., Mano J.F., Mono-dispersed bioactive glass nanospheres: preparation and effects on biomechanics of mammalian cells, J. Biomed. Mater. Res. A 2010, 95A, 747–754.

  • [16] Lin C.,Mao C., Zhang J., Li Y., Chen X., Healing effect of bioactive glass ointment on full-thickness skin wounds, Biomed. Mater. 2012, 7, 045017.

  • [17] Sapadin A.N., Fleischmajer R., Tetracyclines: nonantibiotic properties and their clinical implications, J. Am. Acad. Dermatol. 2006, 54, 258–265.

  • [18] Ruhe J.J., Menon A., Tetracyclines as an oral treatment option for patients with community onset skin and soft tissue infections caused by methicillin-resistant Staphylococcus aureus, Antimicrob. Agents Chemother. 2007, 51, 3298–32303.

  • [19] Harless K., Borlaug G., Monson T.A., Stemper M.E., Davis J.P., Abing A.E., Shelerud J.F., An investigation of antibiotic susceptibility to empiric therapy for community-associated methicillinresistant Staphylococcus aureus, W.M.J. 2014, 113, 59–63.

  • [20] Enoch D.A., Karas J.A., Aliyu S.H., Oral antimicrobial options for the treatment of skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus (MRSA) in the UK, Int. J. Antimicrob. Agents 2009, 33, 497–502.

  • [21] Amin A.N., Cerceo E.A., Deitelzweig S.B., Pile J.C., Rosenberg D.J., Sherman B.M., Hospitalist perspective on the treatment of skin and soft tissue infections,Mayo Clin. Proc. 2014, 89, 1436– 1451.

  • [22] Domingues Z.R., Cortés M.E., Gomes T.A., Diniz H.F., Freitas C.S., Gomes J.B., Faria A.M., Sinisterra R.D., Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with beta-cyclodextrin, Biomaterials 2004, 25, 327–333.

  • [23] Kaitila I., The mechanism by which tetracycline hydrochloride inhibits mineralization in vitro, Biochim. Biophys. Acta 1971, 244, 584–594.

  • [24] Dashti A., Ready D., Salih V., Knowles J.C., Barralet J.E., Wilson M., Donos N., Nazhat S.N., In vitro antibacterial eflcacy of tetracycline hydrochloride adsorbed onto Bio-Oss bone graft, J. Biomed. Mater. Res. B Appl. Biomater. 2010, 93, 394–400.

  • [25] Andrade A.L., Manzi D., Domingues R.Z., Tetracycline and propolis incorporation and release by bioactive glassy compounds, J. Non-Cryst Solids 2006, 352, 3502–3507.

  • [26] Andrade A.L., Souza D.M., Vasconcellos W.A., Ferreira R.V., Domingues RZ., Tetracycline and/or hydrocortisone incorporation and release by bioactive glasses compounds, J. Non-Cryst Solids 2009, 355, 811–816.

  • [27] Cavalu S., Banica F., Gruian C., Vanea E., Goller G., Simon V., Microscopic and spectroscopic investigation of bioactive glasses for antibiotic controlled release, J. Mol. Struct. 2013, 1040, 47– 52.

  • [28] Zhao L.Z., Yan X.X., Zhou X.F., Zhou L., Wang H.N., Tang H.W., Chengzhong Y., Mesoporous bioactive glasses for controlled drug release, Micropor Mesopor Mat 2008, 109, 210–215.

  • [29] Rivadeneira J., Di Virgilio A.L., Audisio C., Boccaccini A.R., Gorustovich A., Evaluation of antibacterial and cytotoxic effects of nano-sized bioactive glass/collagen composites releasing tetracycline hydrochloride, J. Appl. Microbiol. 2014, 116, 1438– 1446.

  • [30] Luz G.M., Mano J.F., Preparation and characterization of bioactive glass nanoparticles prepared by sol-gel for biomedical applications, Nanotechnology 2011, 22, 494014.

  • [31] Kokubo T., Takadama H., How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915.

  • [32] Stigter M., de Groot K., Layrolle P., Incorporation of tobramycin into biomimetic hydroxyapatite coating on titanium, Biomaterials 2002, 23, 4143–4153.

  • [33] Melville A., Rodríguez-Lorenzo L., Forsythe J., Effects of the calcination temperature on the drug delivery behaviour of ibuprofen from hydroxyapatie powders, J. Mater. Sci. Mater. Med. 2008, 19, 1187–1195.

  • [34] Peles Z., Zilberman M., Novel soy protein wound dressings with controlled antibiotic release: mechanical and physical properties, Acta Biomater. 2012, 8, 209–217.

  • [35] Wang D., Miller S.C., Kopeckova P., Kopecek J., Bone targeting macromolecular therapeutics, Adv Drug Deliv Rev 2005, 57, 1049–1076.

  • [36] Huang W.C., Zeng H., Weng L.L., Synthesis of tetracycline analogs, Chinese Chem. Lett. 2008, 19, 19–22.

  • [37] Oyane A., Yokoyama Y., Uchida M., Ito A., The formation of an antibacterial agent-apatite composite coating on a polymer surface using a metastable calcium phosphate solution, Biomaterials 2006, 27, 3295–3303.

  • [38] Soundrapandian C., Mahato A., Kundu B., Datta S., Sa B., Basu D., Development and effect of different bioactive silicate glass scaffolds: in vitro evaluation for use as a bone drug delivery system, J. Mech. Behav. Biomed. Mater. 2014, 40, 1–12.

  • [39] Sepulveda P., Jones J.R., Hench L.L., Characterization of meltderived 45S5 and sol–gel-derived 58S bioactive glasses, J. Biomed. Mater. Res. 2001, 58, 734–740.

  • [40] Lei B., Chen X.F., Wang Y.J., Zhao N.R., Du C, Fang L.M., Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation, J. Biomed. Mater. Res. Part A 2010, 94A, 1091–1099.

  • [41] van de Belt H., Neut D., Uges D.R., SchenkW., van Horn J.R., van der Mei H.C., Busscher H.J., Surface roughness, porosity and wettability of gentamicin-loaded bone cements, and their antibiotic release, Biomaterials 2000, 21, 1981–1987.

  • [42] Campoccia D., Montanaro L., Speziale P., Arciola C.R., Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use, Biomaterials 2010, 31, 6363–6377.

  • [43] Edwards R., Harding K.G., Bacteria and wound healing, Curr. Opin. Infect. Dis. 2004, 17, 91–96.

  • [44] Zilberman M., Elsner J.J., Antibiotic-eluting medical devices for various applications, J. Control Release 2008, 130, 202–215.

  • [45] Desrousseaux C., Sautou V., Descamps S., Traoré O.J., Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation, Hosp Infect 2013, 85, 87–93.

  • [46] Rivadeneira J., Carina Audisio M., Boccaccini A.R., Gorustovich A.A., In vitro antistaphylococcal effects of a novel 45S5 bioglass/agar–gelatin biocomposite films, J. Appl. Microbiol. 2013, 115, 604–612.

  • [47] Pratten J., Nazhat S.N., Blaker J.J., Boccaccini A.R., In vitro attachment of S. epidermidis to surgical sutures with and without Ag-containing bioactive glass coating, J Biomater Appl 2004, 19, 47–57.

  • [48] Misra S.K., Ansari T.I., Valappil S.P., Mohn D., Philip S.E., Stark W.J., Roy I., Knowles J.C., Salih V., Boccaccini A.R., Poly(3- hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications, Biomaterials 2010, 31, 2806–2815.

  • [49] Rivadeneira J., Di Virgilio A.L., Audisio M.C., Boccaccini A.R., Gorustovich A.A., Evaluation of the antibacterial effects of vancomycin hydrochloride released from agar-gelatin-bioactive glass composites, Biomed Mater 2015, 10, 015011


Journal + Issues

Biomedical Glasses is an international open access journal covering the field of glasses for biomedical applications. The aim of the journal is to provide a peer-reviewed forum for the publication of original research reports and authoritative review articles related to the development of biomedical glasses and their use in clinical applications.