Incorporation of particulate bioactive glasses into a dental root canal sealer

Susanne Heid 1 , Philipp R. Stoessel 2 , Tobias T. Tauböck 3 , Wendelin J. Stark 2 , Matthias Zehnder 3 , and Dirk Mohn 2 , 3
  • 1 Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany; Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
  • 2 Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
  • 3 Department of Preventive Dentistry, Periodontology and Cariology, University of Zurich, Center of Dental Medicine, Zurich, Switzerland


Flame spray synthesis has opened the possibility to add additional elements to complex materials such as bioactive glasseswhile maintaining nanoparticulate properties. In this study, it was investigated whether a flamesprayed bismuth oxide doped nanometric 45S5 bioactive glass could be incorporated into a commercially available epoxy-resin root canal sealer, and how this compared to a conventional, pure 45S5 micrometric bioactive glass. Effects on radiopacity, microhardness, pH and mineral induction in phosphate buffered saline and simulated body fluid were studied. It was revealed that the radiopaque nanometric bismuth-containing 45S5 bioactive glass reduced radiopacity of the root canal sealer less than a conventional micrometric counterpart. In addition, pH induction and calcium phosphate precipitation were quicker with the nanometric compared to the micrometric material, whilst the micrometric glass displayed a higher alkaline capacity. Both materials apparently bound to the epoxy resin matrix, thus increasing its microhardness after polymerization reaction. Effects were dose-dependent. The investigated radiopaque bioactive glass containing bismuth oxide could be a valuable add-on for current root canal sealers.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Hench L.L., Paschall H.A., Direct chemical bond of bioactive glass-ceramic materials to bone and muscle, J. Biomed. Mater. Res., 1973, 7, 25–42.

  • [2] Stoor P., Soderling E., Salonen J.I., Antibacterial effects of a bioactive glass paste on oral microorganisms, Acta Odontol. Scand., 1998, 56, 161–165.

  • [3] Zamet J.S., Darbar U.R., Griflths G.S., Bulman J.S., Bragger U., Burgin W., et al., Particulate bioglass(R) as a grafting material in the treatment of periodontal intrabony defects, J. Clin. Periodontol, 1997, 24, 410–418.

  • [4] Hermann B.W., Calciumhydroxid als Mittel zum Behandeln und Füllen von Zahnwurzelkanälen.

  • [PhD Thesis]. Würzburg, D, 1920.

  • [5] Kangasniemi I.M.O., Vedel E., Deblickhogerworst J., Yliurpo A.U., Degroot K., Dissolution and scanning electron microscopic studies of Ca,P particle-containing bioactive glasses, J. Biomed. Mater. Res., 1993, 27, 1225–1233.

  • [6] Waltimo T., Mohn D., Paqué F., Brunner T.J., StarkW.J., Imfeld T., et al., Fine-tuning of Bioactive Glass for Root Canal Disinfection, J. Dent. Res., 2009, 88, 235–238.

  • [7] Zehnder M., Soderling E., Salonen J., Waltimo T., Preliminary evaluation of bioactive glass S53P4 as an endodontic medication in vitro, J. Endod., 2004, 30, 220–224.

  • [8] Vollenweider M., Brunner T.J., Knecht S., Grass R.N., Zehnder M., Imfeld T., et al., Remineralization of human dentin using ultrafine bioactive glass particles, Acta Biomater., 2007, 3, 936– 943.

  • [9] Taubock T.T., Zehnder M., Schweizer T., StarkW.J., Attin T., Mohn D., Functionalizing a dentin bonding resin to become bioactive, Dent. Mater., 2014, 30, 868–875.

  • [10] Alani A., Knowles J.C., Chrzanowski W., Ng Y.L., Gulabivala K., Ion release characteristics, precipitate formation and sealing ability of a phosphate glass-polycaprolactone-based composite for use as a root canal obturation material, Dent. Mater., 2009, 25, 400–410.

  • [11] Mohn D., Bruhin C., Luechinger N.A., StarkW.J., Imfeld T., Zehnder M., Compositesmade of flame-sprayed bioactive glass 45S5 and polymers: bioactivity and immediate sealing properties, Int. Endod. J., 2010, 43, 1037–1046.

  • [12] Brunner T.J., Grass R.N., Stark W.J., Glass and bioglass nanopowders by flame synthesis, Chem. Commun., 2006, 13, 1384–1386.

  • [13] Waltimo T., Brunner T.J., Vollenweider M., Stark W.J., Zehnder M., Antimicrobial effect of nanometric bioactive glass 45S5, J. Dent. Res., 2007, 86, 754–757.

  • [14] Mohn D., Zehnder M., Imfeld T., Stark W.J., Radio-opaque nanosized bioactive glass for potential root canal application: evaluation of radiopacity, bioactivity and alkaline capacity, Int. Endod. J., 2010, 43, 210–217.

  • [15] Gatewood R.S., Endodontic Materials, Dent. Clin. N. Am., 2007, 51, 695–712.

  • [16] Marending M., Bubenhofer S.B., Sener B., De-Deus G., Primary assessment of a self-adhesive gutta-percha material, Int. Endod. J., 2013, 46, 317–322.

  • [17] Slaus G., Bottenberg P., A survey of endodontic practice amongst Flemish dentists, Int. Endod. J., 2002, 35, 759–767.

  • [18] Lottanti S., Taubock T.T., Zehnder M., Shrinkage of Backfill Gutta-percha upon Cooling, J. Endod., 2014, 40, 721–724.

  • [19] Orstavik D., Nordahl I., Tibballs J.E., Dimensional change following setting of root canal sealermaterials, Dent.Mater., 2001, 17, 512–519.

  • [20] Neelakantan P., Sharma S., Shemesh H., Wesselink P.R., Influence of Irrigation Sequence on the Adhesion of Root Canal Sealers to Dentin: A Fourier Transform Infrared Spectroscopy and Push-out Bond Strength Analysis, J. Endod., 2015, 41, 1108– 1111.

  • [21] Kokubo T., Kushitani H., Sakka S., Kitsugi T., Yamamuro T., Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3, J. Biomed. Mater. Res., 1990, 24, 721–734.

  • [22] Gubler M., Brunner T.J., Zehnder M., Waltimo T., Sener B., Stark W.J., Do bioactive glasses convey a disinfecting mechanism beyond a mere increase in pH?, Int. Endod. J., 2008, 41, 670–678.

  • [23] Carvalho-Junior J.R., Correr-Sobrinho L., Correr A.B., Sinhoreti M.A.C., Consani S., Sousa-Neto M.D., Radiopacity of root fillingmaterials using digital radiography, Int. Endod. J., 2007, 40, 514–520.

  • [24] Tasdemir T., Yesilyurt C., Yildirim T., Er K., Evaluation of the Radiopacity of New Root Canal Paste/Sealers by Digital Radiography, J. Endod., 2008, 34, 1388–1390.

  • [25] Coraca-Huber D.C., Fille M., Hausdorfer J., Putzer D., Nogler M., Eflcacy of Antibacterial Bioactive Glass S53P4 Against S. aureus Biofilms Grown on Titanium Discs In Vitro, J. Orthop. Res., 2014, 32, 175–177.

  • [26] Khvostenko D., Mitchell J.C., Hilton T.J., Ferracane J.L., Kruzic J.J., Mechanical performance of novel bioactive glass containing dental restorative composites, Dent.Mater., 2013, 29, 1139–1148.

  • [27] Mortazavi V., Nahrkhalaji M.M., Fathi M.H., Mousavi S.B., Esfahani B.N., Antibacterial effects of sol-gel-derived bioactive glass nanoparticle on aerobic bacteria, J. Biomed. Mater. Res. Part A, 2010, 94A, 160–168.

  • [28] Borbely P., Gulabivala K., Knowles J.C., Degradation properties and ion release characteristics of Resilon(R) and phosphate glass/polycaprolactone composites, Int. Endod. J., 2008, 41, 1093–1100.

  • [29] Khvostenko D., Hilton T.J., Ferracane J.L., Mitchell J.C., Kruzic J.J., Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations, Dent. Mater., (in press), DOI: 10.1016/

  • [30] Cerruti M., Greenspan D., Powers K., Effect of pH and ionic strength on the reactivity of Bioglass(R) 45S5, Biomaterials, 2005, 26, 1665–1674.

  • [31] Madanat R., Moritz N., Vedel E., Svedstrom E., Aro H.T., Radioopaque bioactive glass markers for radiostereometric analysis, Acta Biomater., 2009, 5, 3497–3505.

  • [32] Li X.,Wang X.P., He D.N., Shi J.L., Synthesis and characterization of mesoporous CaO-MO-SiO2-P2O5 (M = Mg, Zn, Cu) bioactive glasses/composites, J. Mater. Chem., 2008, 18, 4103–4109.

  • [33] Varila L., Fagerlund S., Lehtonen T., Tuominen J., Hupa L., Surface reactions of bioactive glasses in buffered solutions, J. Eur. Ceram. Soc. 2012, 32, 2757–2763.

  • [34] Xu H.H.K., Dental composite resins containing silica-fused ceramic single-crystalline whiskers with various filler levels, J. Dent. Res., 1999, 78, 1304–1311.

  • [35] Sauro S., Osorio R., Fulgencio R., Watson T.F., Cama G., Thompson I., et al., Remineralisation properties of innovative light-curable resin-based dental materials containing bioactive micro-fillers, J. Mat. Chem. B, 2013, 1, 2624–2638.

  • [36] Misra S.K., Mohn D., Brunner T.J., Stark W.J., Philip S.E., Roy I., et al., Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites, Biomaterials, 2008, 29, 1750–1761.


Journal + Issues